Learning and Risk Premiums in an Aribitrage-free Term Structure Model

Marco Giacoletti, Kristoffer T. Laursen and Kenneth J. Singleton

Stanford University

May 17, 2018

Motivating Learning

- Risk premiums in the U.S. Treasury bond markets vary over time, with the shape of the yield curve and macro conditions.
- These calculations presume that investors know the structure of the economy, and they are based on full-sample estimates.

Motivating Learning

- Risk premiums in the U.S. Treasury bond markets vary over time, with the shape of the yield curve and macro conditions.
- These calculations presume that investors know the structure of the economy, and they are based on full-sample estimates.
- How might market participants *prospectively* form *real-time* views about risks in the Treasury market?
- Views should be adaptive to "regime changes:"
 - e.g., unforeseen changes in monetary and fiscal policies, and transparency in the policy formation process.
 - reflect investor "confusion" in the market?

First Look with "Naive" Learning

• Expected excess returns vary substantially over time in bond markets. Suppose we capture this by linearly projecting onto the first three principal components (PCs) of yields:

$$Exr_{t+h}^n = \alpha_{n,t} + \mathcal{B}_{h\mathcal{P},t}^n \mathcal{P}_t,$$

where \mathcal{P}_t includes the low-order PCs of the yield curve.

- Case 1: an econometrician estimates $\mathcal{B}_{h\mathcal{P}}^n$ (fixed over time) using the full sample (no learning).
- Case 2: \mathcal{RA} updates $\mathcal{B}_{h\mathcal{P},t}^n$ in real time using recursive least-squares (Bayesian under special circumstances).

Expected Excess Returns Over 1-Quarter on a 10-Year Zero Full Sample (FS) Minus Rolling Least Squares (RLS)

What is Known? What Do Investors Learn About?

1 Investors in Treasury bonds have long known:

- that the cross-sectional distribution of bond yields is well described by a factor model with the low-order *PC*s;
- so (plausibly) they observe the risk factors- the relevant "state of the economy" for pricing Treasury bonds.

What is Known? What Do Investors Learn About?

• Investors in Treasury bonds have long known:

- that the cross-sectional distribution of bond yields is well described by a factor model with the low-order *PC*s;
- so (plausibly) they observe the risk factors- the relevant "state of the economy" for pricing Treasury bonds.
- Bond-market participants cannot foresee the future: Learning about the data-generating process for yields (PCs).

What is Known? What Do Investors Learn About?

1 Investors in Treasury bonds have long known:

- that the cross-sectional distribution of bond yields is well described by a factor model with the low-order *PC*s;
- so (plausibly) they observe the risk factors- the relevant "state of the economy" for pricing Treasury bonds.
- Bond-market participants cannot foresee the future: Learning about the data-generating process for yields (PCs).
- **3** Our Bayesian learner \mathcal{RA} :
 - takes as known the pricing distribution for bonds;
 - follows a (constrained) Bayesian learning rule over the parameters of the DGP for the risk factors, under the presumption that these parameters change over time.

The Nature of $\mathcal{R}\mathcal{A}\text{'s}$ Learning Problem

• Agents agree that the one-period riskless rate r_t is given by

$$r_t = \rho_0 + \rho_\mathcal{P} \mathcal{P}_t,$$

 $\bullet\,$ The price D^m_t of a zero-coupon bond issued at date t and maturing at date t+m is

$$D_{t}^{m} = E_{t} \left[\underbrace{\mathcal{M}^{\mathcal{B}}(\mathcal{P}_{t+1}, Z_{1}^{t})}_{\text{stochastic discount factor}} D_{t+1}^{m-1} \right]$$
$$= \int e^{-r_{t}} D_{t-1}^{m-1} \underbrace{e^{r_{t}} \mathcal{M}^{\mathcal{B}}(\mathcal{P}_{t+1}, Z_{1}^{t}) \times f(\mathcal{P}_{t+1} | Z_{1}^{t})}_{\text{risk-neutral density} f^{\mathbb{Q}}(\mathcal{P}_{t+1} | Z_{1}^{t})} d\mathcal{P}^{\mathbb{Q}}$$
$$= E_{t}^{\mathbb{Q}} \left[e^{-r_{t}} D_{t+1}^{m-1} \right].$$

The Nature of $\mathcal{R}\mathcal{A}\text{'s}$ Learning Problem

• Agents agree that the one-period riskless rate r_t is given by

$$r_t = \rho_0 + \rho_\mathcal{P} \mathcal{P}_t,$$

 $\bullet\,$ The price D^m_t of a zero-coupon bond issued at date t and maturing at date t+m is

Everyone Knows the Pricing Distribution

• "Affine" models imply (Duffie, Pan, and Singleton (2000)):

$$y_t^m = A_m(\Theta^{\mathbb{Q}}) + B_m(\Theta^{\mathbb{Q}})\mathcal{P}_t.$$

- Market participants reverse engineer the \mathbb{Q} distribution from the prices of traded bonds.
- $\bullet\,$ E.g., suppose, under the pricing distribution, ${\cal P}$ is described by

$$\mathcal{P}_{t+1} = K_{0\mathcal{P}}^{\mathbb{Q}} + K_{\mathcal{P}\mathcal{P}}^{\mathbb{Q}}\mathcal{P}_t + \Sigma_{\mathcal{P}\mathcal{P}}^{1/2}e_{\mathcal{P},t+1}^{\mathbb{Q}}, \ e_{\mathcal{P},t+1}^{\mathbb{Q}} \sim N(0,\Sigma_{\mathcal{P}}).$$

• Then the loadings $B_m(\Theta^{\mathbb{Q}})$ depend only on the 3 eigenvalues of $K^{\mathbb{Q}}_{\mathcal{PP}}$! (Joslin, Singleton, and Zhu (2011)). These loadings can be recovered essentially from cross-sectional regressions.

Disagreemen

Model $\ell_{CG}(1)$

References

But wait! Investors Disagree: Inter-Decile Ranges of BCFF Forecasts

Forecasts from the Blue Chip Financial Forecasts

Do Blue Chip Financial (BCFF) Forecasters Agree on $\Theta^{\mathbb{Q}}$?

• If all of the BCFF professionals believe that yields are affine in \mathcal{P} , then the yield forecasts for horizon h ordered by deciles, $y_{t,o_1}^h < \ldots < y_{t,o_{10}}^h$, must satisfy

$$\hat{y}_{t,o}^{mh} = \bar{A}^{mh} + \bar{B}^{mh}\hat{\mathcal{P}}_{t,o}^{h} + e_{t,o}^{mh},$$

where y_{t,o_1}^h is the tenth percentile forecast, $y_{t,o_{10}}^h$ is the ninetieth percentile, etc.

- The loadings should be the same across ordered professionals.
- (Deciles because the forecasters change over time.)

Loadings on PC1

Loadings on PC2

Learning About the Historical Distribution

• Learning about the jointly Gaussian $\mathbb P$ process for Z:

$$Z_{t+1} = K_{0t}^{\mathbb{P}} + K_{Zt}^{\mathbb{P}} Z_t + \Sigma_Z^{1/2} e_{Z,t+1}^{\mathbb{P}}.$$

() $\Theta_t^{\mathbb{P}}$, is unknown and possibly changing over time:

$$\theta^{\mathbb{P}}_t = \theta^{\mathbb{P}}_{t-1} + \eta_t, \qquad \eta_t \stackrel{iid}{\sim} N(0, Q_t),$$

- **2** $\mathcal{R}\mathcal{A}$'s views about $\Theta^{\mathbb{P}}$ revised using a Gaussian posterior distribution $f(\Theta_{t+1}^{\mathbb{P}}|Z_1^t, (\text{yield history})_t)$; $\mathcal{R}\mathcal{A}$ does not demand compensation for bearing this parameter risk.
- Implies a (constrained) version of Bayesian learning is Constant Gain Learning with gain coefficient γ ∈ (0, 1]. (γ = 1 is recursive least-squares (RLS) learning.)

References

RMSE's (Basis Points) 3-Month Forecasts Learning From 1985 Through 2014

Rule	6m	1Y	2Y	3Y	5Y	7Y	10Y
$\ell(RW)$	$35.6 \ (-4.08)$	$38.5 \ (-3.27)$	40.6 (-4.52)	$41.1 \\ (-5.56)$	$40.5 \ (-5.11)$	$39.7 \ (-3.93)$	$36.7 \\ (-3.88) \\ []$
$\ell(BCFF)$	48.1 () [4.08]	$48.3 \\ {}^{()}_{[3.27]}$	$49.2_{()}_{[4.52]}$	52.6 $^{()}$ $^{[5.56]}$	$\underset{()}{47.5}$	$\underset{()}{47.1}$	$\underset{()}{43.9}$ $_{[3.88]}$
$\ell^L(\mathcal{P})$	$34.92 \\ (-4.29) \\ [-0.86]$	$38.30 \ (-3.21) \ [-0.23]$	$42.12 \\ (-4.13) \\ [3.39]$	$41.81 \\ (-5.88) \\ [1.34]$	$40.55 \ (-5.18) \ [0.10]$	$39.47 \\ (-4.76) \\ [-0.30]$	$\substack{37.71 \\ (-3.32) \\ [0.97]}$
$\ell^L_{CG}(\mathcal{P})$	$34.12 \ (-4.29) \ [-1.59]$	$38.03 \ (-3.14) \ [-0.45]$	$41.75 \ (-3.96) \ [3.33]$	$\substack{41.61 \\ (-5.59) \\ [1.27]}$	$40.64 \\ (-5.11) \\ [0.26]$	$39.79 \ (-4.61) \ [0.11]$	$37.50 \ (-3.46) \ [1.05]$

Disagreemen

Model

 $_{G}(\mathcal{P},H)$

References

Expected Excess Returns on 10Y Bond Over 1Y Horizon

• \mathcal{RA} represents one view based on rule $\ell^L_{CG}(\mathcal{P})$. Investorsincluding many professional forecasters- disagree.

- Investors (plausibly) agree on the sources of risks for pricing Treasury bonds, summarized by the low-order PCs.

- Investors (plausibly) agree on the sources of risks for pricing Treasury bonds, summarized by the low-order PCs.
- Learning about the data-generating process for yields using different models/priors.

- Investors (plausibly) agree on the sources of risks for pricing Treasury bonds, summarized by the low-order PCs.
- Learning about the data-generating process for yields using different models/priors.
- Seems natural for RA to recognize this dispersion in beliefs, and to ask whether it is informative about the future.

Aligning Theory with Data/Practice

where g is a latent state variable (e.g., "output growth"), $\Psi_t = \sigma_c^{-1}(\hat{g}_t^a - \hat{g}_t^b)$, η_t is the ratio of agents' SDFs.

- Differences of opinion models of Xiong and Yan (2009), Buraschi and Whelan (2016) ⇒ high-dimensional "factor space" *P* or strong spanning restrictions.
- Data suggests low-dimensional factor structure: the low-order *PC*s in affine *DTSMs* (Joslin, Singleton, and Zhu (2011)).
 - Danger of over-fitting (Duffee (2010));
 - Spanning by PC's is implausible;
 - Plausibly, these models imply that MPR's depend on disagreement! Disagreement predicts excess returns.

Disagreement is Priced

Disagreement is Correlated with Risk Factors ${\cal P}$							
	Forecast Horizon						
	1Q 2Q 3Q 4Q						
$ID(y^{2y})$	51.18%	58.84%	57.48%	55.11%			
$ID(y^{7y})$	41.33%	52.85%	57.22%	56.84%			

• Notation: $\mathcal{H}_t = (ID_{1y}^{2y}, ID_{1y}^{7y}).$

Disagreement is Predictive for Annual Excess Returns January 1985 through December 2015

Dependent Variable: One-Year-Ahead Excess Returns

	2у	Зу	5у	7у	10y
\mathcal{P}_1	$\begin{array}{c} 0.3221 \\ [5.2630] \end{array}$	$\begin{array}{c} 0.5335 \\ \left[4.8375 ight] \end{array}$	$0.8024 \\ [4.0640]$	1.1068 $[3.8154]$	1.2961 [3.0806]
\mathcal{P}_2	$\begin{array}{c} 0.3795 \\ \scriptscriptstyle [2.5393] \end{array}$	$\begin{array}{c} 0.7579 \\ [2.6590] \end{array}$	1.7367 $_{[3.5797]}$	$\underset{[4.2460]}{2.7961}$	$\begin{array}{c} 4.3236 \\ [5.0092] \end{array}$
\mathcal{P}_3	$1.4589 \\ [1.5312]$	$\underset{[1.3852]}{2.5100}$	$\begin{array}{c} 4.1477 \\ \left[1.4051 ight] \end{array}$	$\underset{[1.6654]}{6.4046}$	$12.2560 \\ {\scriptstyle [2.3770]}$
H_{2y}	$\begin{array}{c} 0.8851 \\ [1.7784] \end{array}$	$2.2796 \\ [2.4121]$	4.9092 [2.9237]	$\begin{array}{c} 6.4796 \\ ext{[2.7830]} \end{array}$	8.4242 [2.6414]
H_{7y}	-1.9436 [-3.6679]	-4.1945 [-4.2610]	-7.9459 [-4.5231]	-10.9215 $_{[-4.5408]}$	-14.2787 [-4.3765]
$adjR^2$	23.76%	23.16%	27.24%	30.14%	31.22%

• Consensus beliefs are redundant: largely spanned by $\mathcal{P}_{t_{\star}}$

Models Used for Learning

Rule	DTSM	State Vector	Restrictions	γ
$\ell(RW)$	No	Own Yield	N/A	N/A
$\ell^L(\mathcal{P})$	Yes	${\cal P}$	No-Arbitrage MPR Constraints	1
$\ell^L_{CG}(\mathcal{P})$	Yes	${\cal P}$	No-Arbitrage + MPR Constraints	0.99
$\ell(\mathcal{P},\mathcal{H})$	Yes	$(\mathcal{P},\mathcal{H})$	No-Arbitrage + MPR Constraints	1
$\ell_{CG}(\mathcal{P},\mathcal{H})$	Yes	$(\mathcal{P},\mathcal{H})$	No-Arbitrage + MPR Constraints	0.99

RMSE's (Basis Points) for 1 Year-Ahead Forecasts January 1995 through December 2014

	RMSE's (in basis points) for Annual Horizon						
Rule	6m	1Y	2Y	3Y	5Y	7Y	10Y
$\ell(RW)$	$118.8 \\ (-1.00)$	$115.3 \\ (-0.83)$	$\underset{\left(-1.90\right)}{103.3}$	$94.1 \\ (-2.65)$	$84.9 \\ (-2.82)$	$\underset{\left(-2.75\right)}{78.8}$	$\underset{\left(-2.69\right)}{70.8}$
$\ell(BCFF)$	128.8	123.9	122.1	122.5	105.8	[] 100.6	[] 88.1
	[1.00]	[0.83]	[1.90]	[2.65]	[2.82]	[2.75]	[2.69]
$\ell_{CG}(P)$	108.4 (-1.60) [-1.32]	105.3 (-1.70) [-1.27]	98.5 (-2.31) [-0.84]	90.7 (-2.96) [-0.58]	82.9 (-3.05) [-0.35]	(1.1) (-3.28) [-0.36]	(1.2) (-3.02) [0.12]
$\ell_{CG}(\mathcal{P},\mathcal{H})$	$108.5 \\ (-1.43)$	$104.4 \\ (-1.53)$	$\underset{\left(-2.23\right)}{95.5}$	$\underset{\left(-2.98\right)}{86.3}$	$\underset{\left(-3.41\right)}{76.5}$	$\underset{\left(-4.02\right)}{69.7}$	$\underset{\left(-4.01\right)}{63.3}$
	[-1.29]	[-1.42]	[-1.43]	[-1.33]	[-1.37]	[-1.64]	[-1.73]

Errors (% per annum) from Forecasting Realized Excess returns on the 10-year bond over a 1-year horizon: $\ell_{CG}(\mathcal{P}, H)$ (solid) and $\ell_{CG}(\mathcal{P})$ (dashed).

Is Disagreement a Proxy for Macroeconomic Uncertainty? RMSEs of Expected Excess Returns on 10-year Bond

	2Y	3Y	5Y	7Y	10Y
Part A: January	/, 1995 –	Decembe	r, 2014		
$\ell_{CG}(\mathcal{P})$	1.10%	1.97%	3.39%	4.76%	6.65%
$\ell_{CG}(\mathcal{P},H)$	1.09%	1.92%	3.17%	4.36%	5.96%
$\ell_{CG}(\mathcal{P}, REA)$	1.07%	1.96%	3.50%	5.02%	7.22%
$\ell_{CG}(\mathcal{P}, REA, INF)$	1.07%	1.97%	3.51%	5.04%	7.24%
$\ell_{CG}(\mathcal{P}, H, REA)$	1.07%	1.92%	3.32%	4.68%	6.60%
$\ell_{CG}(\mathcal{P}, ID(RGDP), ID(INF))$	1.20%	2.16%	3.71%	5.23%	7.14%

RMSEs of Expected Excess Returns on 10-year Bond

	2Y	3Y	5Y	7Y	10Y
Part B: Januar	y, 2001 –	Decembe	er, 2007		
$\ell_{CG}(\mathcal{P})$	1.37%	2.44%	3.84%	4.95%	5.72%
$\ell_{CG}(\mathcal{P},H)$	1.36%	2.39%	3.60%	4.47%	4.79%
$\ell_{CG}(\mathcal{P}, REA)$	1.22%	2.29%	4.02%	5.72%	7.71%
$\ell_{CG}(\mathcal{P}, REA, INF)$	1.23%	2.32%	4.09%	5.84%	7.92%
$\ell_{CG}(\mathcal{P}, H, REA)$	1.21%	2.21%	3.69%	5.08%	6.53%
$\ell_{CG}(\mathcal{P}, ID(RGDP), ID(INF))$	1.48%	2.65%	4.21%	5.48%	6.70%

lodel $\ell_{CG}(\mathcal{P})$

Buraschi, A., and P. Whelan, 2016, Speculation, Hedging, and Interest Rates, Working paper, Imperial College.

- Duffee, G., 2010, Sharpe Ratios in Term Structure Models, Working paper, Johns Hopkins University.
- Duffie, D., J. Pan, and K. Singleton, 2000, Transform Analysis and Asset Pricing for Affine Jump-Diffusions, *Econometrica* 68, 1343–1376.
- Joslin, S., M. Priebsch, and K. Singleton, 2014, Risk Premiums in Dynamic Term Structure Models with Unspanned Macro Risks, *Journal of Finance* LXIX, 1197–1233.
- Joslin, S., K. Singleton, and H. Zhu, 2011, A New Perspective on Gaussian Dynamic Term Structure Models, *Review of Financial Studies* 24, 926–970.
- Ludvigson, S., and S. Ng, 2010, Macro Factors in Bond Risk Premia, *Review of Financial Studies* 22, 5027–5067.
- Xiong, W., and H. Yan, 2009, Heterogeneous Expectations and Bond Markets, *Review of Financial Studies*.

