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Motivating Learning

@ Risk premiums in the U.S. Treasury bond markets vary over
time, with the shape of the yield curve and macro conditions.

@ These calculations presume that investors know the structure
of the economy, and they are based on full-sample estimates.
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Motivating Learning

@ Risk premiums in the U.S. Treasury bond markets vary over
time, with the shape of the yield curve and macro conditions.

@ These calculations presume that investors know the structure
of the economy, and they are based on full-sample estimates.

@ How might market participants prospectively form real-time
views about risks in the Treasury market?

@ Views should be adaptive to “regime changes:”

e e.g., unforeseen changes in monetary and fiscal policies, and
transparency in the policy formation process.

o reflect investor “confusion” in the market?
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Introduction

First Look with “Naive” Learning

@ Expected excess returns vary substantially over time in bond
markets. Suppose we capture this by linearly projecting onto
the first three principal components (PCs) of yields:

Erriyy, = ang + Byp P,
where P includes the low-order PCs of the yield curve.

o Case 1: an econometrician estimates B;,, (fixed over time)
using the full sample (no learning).

o Case 2: RA updates By, in real time using recursive
least-squares (Bayesian under special circumstances).
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Expected Excess Returns Over 1-Quarter on a 10-Year Zero
Full Sample (FS) Minus Rolling Least Squares (RLS)

(%) Excess Returns
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What is Known? What Do Investors Learn About?

@ Investors in Treasury bonds have long known:
e that the cross-sectional distribution of bond yields is well
described by a factor model with the low-order PCss;

e so (plausibly) they observe the risk factors— the relevant “state
of the economy" — for pricing Treasury bonds.
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What is Known? What Do Investors Learn About?

@ Investors in Treasury bonds have long known:
e that the cross-sectional distribution of bond yields is well
described by a factor model with the low-order PCss;

e so (plausibly) they observe the risk factors— the relevant “state
of the economy" — for pricing Treasury bonds.

@ Bond-market participants cannot foresee the future:
Learning about the data-generating process for yields (PC's).
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What is Known? What Do Investors Learn About?

@ Investors in Treasury bonds have long known:

e that the cross-sectional distribution of bond yields is well
described by a factor model with the low-order PCss;

e so (plausibly) they observe the risk factors— the relevant “state
of the economy" — for pricing Treasury bonds.

@ Bond-market participants cannot foresee the future:
Learning about the data-generating process for yields (PC's).
© Our Bayesian learner RA:
o takes as known the pricing distribution for bonds;

o follows a (constrained) Bayesian learning rule over the
parameters of the DGP for the risk factors, under the
presumption that these parameters change over time.
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The Nature of RA's Learning Problem

@ Agents agree that the one-period riskless rate 74 is given by

re = po + ppPr,

@ The price D{"* of a zero-coupon bond issued at date ¢ and
maturing at date ¢t + m is

D" = B | MP(Pya,Zi) Dy
—_——

stochastic discount factor
— -1 B t t
- / e D e MB(Pyy, ZE) x f(Praa| Z)) dPC

risk-neutral density fQ(P;1|Z%)

= E2[e DY,
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The Nature of RA's Learning Problem

@ Agents agree that the one-period riskless rate 7; is given by

Tt = po + pp Pt

@ The price D}* of a zero-coupon bond issued at date ¢ and
maturing at date ¢t +m is

D" = Ey[MP(Pya,Z})D]TY]

= /e”DZﬁl " MB(Pyi1, Z8) x f(PeyalZy) dP?

risk-nejitral densitny(Pt+1|Z{))
Preferences Historical beliefs

@ Learning about what?  Pricing: D" = E;@ [e_”Dﬁ_ll] .
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Everyone Knows the Pricing Distribution

e "Affine” models imply (Duffie, Pan, and Singleton (2000)):
y" = Am(09) + B (09)P;.

@ Market participants reverse engineer the QQ distribution from
the prices of traded bonds.

o E.g., suppose, under the pricing distribution, P is described by
1/2
Pr1 = K?P + Kgppt + 273/736%,t+1’ e%,tJrl ~ N(0,%p).

@ Then the loadings B,,(©%) depend only on the 3 eigenvalues
of Kgpl (Joslin, Singleton, and Zhu (2011)). These loadings
can be recovered essentially from cross-sectional regressions.
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But wait! Investors Disagree:
Inter-Decile Ranges of BCFF Forecasts
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Forecasts from the Blue Chip Financial Forecasts
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Do Blue Chip Financial (BCFF) Forecasters Agree on ©©?

o If all of the BCFF professionals believe that yields are affine in
‘P, then the yield forecasts for horizon h ordered by deciles,
y,{fm <. < yﬁmo, must satisfy

ytrﬁ)h _ Amh + Bmthtifo + ez’boh,

where yﬁm is the tenth percentile forecast, yﬁom is the
ninetieth percentile, etc.

@ The loadings should be the same across ordered professionals.

o (Deciles because the forecasters change over time.)
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Loadings on PC'1
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Loadings on PC?2
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Learning About the Historical Distribution

@ Learning about the jointly Gaussian IP process for Z:

Zya = Koy + K32y + Xy 2 e A1

© ©F, is unknown and possibly changing over time:

id
0, = 0,1+, e~ N(0,Qr),
@ RA'’s views about OF revised using a Gaussian posterior

distribution f(©F,;|Z1, (yield history);); RA does not demand
compensation for bearing this parameter risk.

© Implies a (constrained) version of Bayesian learning is
Constant Gain Learning with gain coefficient v € (0,1]. (y =1
is recursive least-squares (RLS) learning.)
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RMSE's (Basis Points) 3-Month Forecasts
Learning From 1985 Through 2014

References

Rule 6m 1Y 2Y 3Y 5Y 7Y 10Y
L(RW) 35.6 38.5 40.6 41.1 40.5 39.7 36.7
(—4.08) (—3.27) (—4.52) (=5.56) (=5.11) (—3.93) (—3.88)
i i I i i i
¢(BCFF) 48.1 48.3 49.2 52.6 47.5 47.1 43.9
0 0 0 0 0 0 0
[4.08] (3.27] [4.52] [5.56] [5.11] (3.93] (3.88]
(E(P) 3492 3830 4212 41.81  40.55 39.47  37.71
(—4.29) (=3.21) (—4.13) (—5.88) (—5.18) (—4.76) (—3.32)
[-0.86]  [—0.23]  [3.39] [1.34] [0.10] [—0.30] [0.97]
CEL(P) 34.12 38.03 41.75 41.61  40.64 39.79 7.50
(—4.29) (—3.14) (=3.96) (=5.59) (=5.11) (—4.61) (—3.46)
[-1.59] [—0.45]  [3.33] [1.27] [0.26] [0.11] [1.05]
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Expected Excess Returns on 10Y Bond Over 1Y Horizon

1 1 1 1 1
3
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Dispersion of Beliefs and Learning

© RA represents one view based on rule ¢%,(P). Investors—
including many professional forecasters— disagree.
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© RA represents one view based on rule ¢%,(P). Investors—
including many professional forecasters— disagree.

@ Investors (plausibly) agree on the sources of risks for pricing
Treasury bonds, summarized by the low-order PC's.

STANFORD

UNIVERSITY




Introduction Learning by RA Model £ (P) Disagreement Model Lo (P, H) References

Dispersion of Beliefs and Learning

© RA represents one view based on rule ¢%,(P). Investors—
including many professional forecasters— disagree.

@ Investors (plausibly) agree on the sources of risks for pricing
Treasury bonds, summarized by the low-order PC's.

© Learning about the data-generating process for yields using
different models/priors.
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Dispersion of Beliefs and Learning

© RA represents one view based on rule ¢%,(P). Investors—
including many professional forecasters— disagree.

@ Investors (plausibly) agree on the sources of risks for pricing
Treasury bonds, summarized by the low-order PC's.

© Learning about the data-generating process for yields using
different models/priors.

@ Seems natural for RA to recognize this dispersion in beliefs,
and to ask whether it is informative about the future.
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Aligning Theory with Data/Practice

. 1 R R v =1
re=8— oy + Do +~v(w (n)af + w’(n)al) + Tw“(vmwb(m)\v%,
Y

N—

Lucas Tree Consensus Belief Speculative Demand

where g is a latent state variable (e.g., “output growth”), ¥y = o-;l(gf — [75’) 7+ is the ratio of agents’ SDFs.

e Differences of opinion models of Xiong and Yan (2009),
Buraschi and Whelan (2016) = high-dimensional “factor
space” P or strong spanning restrictions.

@ Data suggests low-dimensional factor structure: the low-order
PCs in affine DTSMs (Joslin, Singleton, and Zhu (2011)).
o Danger of over-fitting (Duffee (2010));
e Spanning by PC's is implausible;
e Plausibly, these models imply that MPR's depend on
disagreement! Disagreement predicts excess returns.
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Disagreement is Priced

Disagreement is Correlated with Risk Factors P

Forecast Horizon

1Q 2Q 3Q 4Q

ID(y%) 51.18% 58.84% 57.48% 55.11%
ID(y™) 41.33% 52.85% 57.22% 56.84%

o Notation: H; = (ID? IDI:Z).

1y»
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References

Disagreement is Predictive for Annual Excess Returns

January 1985 through December 2015

Dependent Variable: One-Year-Ahead Excess Returns

2y 3y Sy Ty 10y
Py 0.3221  0.5335  0.8024 1.1068 1.2961
[5.2630] [4.8375] [4.0640] [3.8154] [3.0806]
Py 0.3795  0.7579  1.7367  2.7961 4.3236
[2.5393] [2.6590] [3.5797] [4.2460] [5.0092]
P3 1.4589  2.5100  4.1477  6.4046 12.2560
[1.5312] [1.3852] [1.4051] [1.6654] [2.3770]
Hy, 0.8851 22796  4.9092 6.4796 8.4242
[1.7784] [2.4121] [2.9237] [2.7830] [2.6414]
Hz, | —1.9436 —4.1945 —7.9459 —10.9215 —14.2787
[-3.6679]  [-4.2610)  [—4.5231] [—4.5408] [—4.3765]
adjR? | 23.76% 23.16% 27.24%  30.14%  31.22%

o Consensus beliefs are redundant: largely spanned by P; ..
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Disagreement

Models Used for Learning

Rule DTSM  State Vector Restrictions 0

U(RW) No  Own Yield N/A N/A

E(P) Yes P No-Arbitrage 1
MPR Constraints

(54(P) Yes P No-Arbitrage +  0.99
MPR Constraints

P, H) Yes (P, H) No-Arbitrage + 1
MPR Constraints

lea(P,H)  Yes (P,H) No-Arbitrage +  0.99
MPR Constraints
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RMSE's (Basis Points) for 1 Year-Ahead Forecasts
January 1995 through December 2014

RMSE's (in basis points) for Annual Horizon
Rule 6m Y 2Y 3Y 5Y 7Y 10Y

((RW) 1188 1153 103.3 94.1 849 788 70.8
(—1.00) (—0.83) (—1.90) (—2.65) (—2.82) (—2.75) (—2.69)

[ [ [ [ [ [ [

((BCFF) 1288 123.9 122.1 1225 105.8 100.6 88.1
0 0 0 0 0 0 0

[1.00]  [0.83]  [1.90]  [2.65]  [2.82]  [2.75]  [2.69]

log(P) 1084 1053 985 90.7 829 771 712

(—1.60) (—1.70) (—2.31) (—2.96) (—3.05) (—3.28) (—3.02)
[-1.32] [-1.27] [-0.84] [-0.58] [-0.35] [-0.36] [0.12]
log(P,H) 108.5 104.4 955 86.3 76.5 69.7 63.3

(—1.43) (—1.53) (—2.23) (—2.98) (—3.41) (—4.02) (—4.01)
[-1.29] [~1.42] [-1.43] [-1.33] [-1.37] [-1.64] [-1.73]
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Learning by RA

Model £ (P)

Disagreement

Model ¢ (P, H)

References

Errors (% per annum) from Forecasting Realized Excess
returns on the 10-year bond over a 1-year horizon:
leq(P, H) (solid) and log(P) (dashed).
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Is Disagreement a Proxy for Macroeconomic Uncertainty?
RMSEs of Expected Excess Returns on 10-year Bond

2Y 3Y 5Y Y 10y
Part A: January, 1995 — December, 2014

lea(P) 1.10% 1.97% 3.39% 4.76% 6.65%
loc(P,H) 1.09% 1.92% 3.17% 4.36% 5.96%
Lea(P,REA) 1.07% 1.96% 3.50% 5.02% 7.22%
lca(P,REA,INF) 1.07% 1.97% 3.51% 5.04% 7.24%
lea(P,H,REA) 1.07% 1.92% 3.32% 4.68% 6.60%
leq(P,ID(RGDP),ID(INF)) 1.20% 2.16% 3.71% 5.23% 7.14%
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RMSEs of Expected Excess Returns on 10-year Bond

2Y 3Y 5Y Y 10Y

Part B: January, 2001 — December, 2007

loc(P) 1.37% 2.44% 3.84% 4.95% 5.72%
toc (P, H) 1.36% 2.39% 3.60% 4.47% 4.79%
lcc(P, REA) 1.22% 2.29% 4.02% 5.72% 7.71%
tcg(P,REA,INF) 1.23%  2.32% 4.09% 5.84% 7.92%
loc(P,H,REA) 1.21% 2.21% 3.69% 5.08% 6.53%
lcg(P,ID(RGDP),ID(INF)) 1.48% 2.65% 4.21% 5.48% 6.70%
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