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Representational Faithfulnessin Accounting: A Model of Hard Information

ABSTRACT: This study models representational faithfulness as“hard” information, or
information that has a meaning upon which everyone agrees. In contrast to prior research,
| show how "honest disagreements’ may arise if we replace the assumption that
individuals' information partitions are common knowledge with the weaker assumption
that the language they use is common knowledge. | start from the usual approach where a
person's knowledge is modeled as a partition of the set of states of the world. | show that
alanguageis"soft" if and only if it isnot isomorphic to a partition of the set of states of
the world. Thisindicates that the standard approach to modeling knowledge may
represent an incompl ete characterization, since, in aworld with soft information, a
complete description of knowledge requires the specification of the message set as well
as the information partitions of the relevant individuals. | aso show how the hard/soft
criterion is different from comparing information partitions on their fineness and from the
concept of common knowledge. Next, using the probability distribution defined over the
set of states of the world, | construct a measure of relative hardness. | show that harder
information systems are more informative in terms of Blackwell’s measure of relative
informativeness. Also | show that relative hardness can be measured using the entropy of
the underlying conditional probability distribution, providing alink between relative
informativeness and the entropy measure.
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1. Representational Faithfulnessin Accounting: Introduction

Consider the situation of an auditor who acts as an expert witness. The outcome of a
court case often pivots on the testimony of an expert, so both sides to a dispute often bring their
own experts. These experts auditors are sworn to tell the truth and are provided the same data;
yet they often disagree. On the one hand, theoretically speaking, such "honest disagreements”
seem surprising. While it may be possible that these experts disagree because they communicate
strategically, economic theory has shown that the notion of an "honest disagreement™ between
experts isimpossible.? On the other hand, practically speaking, such disagreements are expected
and occasion no surprise when they occur. Further, the accounting profession has long
recognized the possibility of honest disagreements. The conceptual framework in accounting
recognizes that disagreement may exist about what financial information “purports to mean.”
According to Statement of Financial Accounting Concepts (SFAC) #2 on the Qualitative
Characteristics of Accounting Information, the requirement that accounting information should
represent what it purports to represent is referred to as “representational faithfulness.” The
objective of this paper isto develop aformal model of representational faithfulness.

The notion that perfectly observed information can have different meaning for different
people has been defined in accounting theory as "soft" information. | use the term “hard”
information to denote information that has the same meaning for all people, so that it possesses
representational faithfulness, and the term “soft” information to denote information that is not
hard. | show that the approach usually adopted in economic theory for expressing how economic
players know things presupposes that all economic information is perfectly hard. In this manner,

| show that honest disagreements do not arise when information is hard, but that they may arise

2 Strategic communication refers to possibly dishonest communication between individuals with
conflicting objectives. The objective of this paper isto investigate the possibility of honest disagreements,
S0 hon-strategic communication is assumed. This objectiveis not trivial. For example, Aumann (1976)
shows that if an event is common knowledge to experts with identical priors, then “agreeing to disagree’
isimpossible. The objective here isto see when, if ever, agreeing to disagree may indeed be possible.



when information is soft. | argue that the reason prior research finds that honest disagreements
are impossible is that this research assumes that what each individual can know is common
knowledge.? If we assume instead that the language individuals use, and not each individual’s
potential knowledge of the world, is common knowledge, then honest disagreements are
possible. Further, | show that allowing information to lack representational faithfulness requires
that the language used by decision-makers provide decision-useful information separate from the
underlying facts that are being communicated. It isamost as if how we say something is as
important as what we say. Also, | provide examples that demonstrate how both the notion of
common knowledge and the fineness criterion used in past literature to compare information
systems are distinct from the criterion devel oped to assess the hardness of an information system.
Last, | extend the model to develop a measure of relative hardness. | show how relative hardness
isrelated to Blackwell’ s notion of decision-useful information and to the concept of entropy well

established in information theory.*

2. Background and Prior Literature

The objective of this paper isto formally model and analyze the characteristic of
representational faithfulness. Building this model led me to connect this research to other
fundamental game theory research that effectively broadened the initial objective considerably.
To appropriately convey where this paper fitsin the literature, it is necessary to clarify the
narrowness of the original research objective, in particular, to show what the original work did

not do, and then to show how theinitial work led to a broader research agenda.

% Sunder (2002) discusses the pivotal role that the common-knowledge assumption plays in accounting
research.

* Anctil, Dickhaut, Kanodia and Shapiro (2003) develop and test experimental a model of information
transparency and coordination and what | refer to as Blackwell's notion of relative informativeness they
refer to as the "Blackwell fineness' criterion. Their measure of transparency is close to my measure of
hardness, but they do not explicitly identify or distinguish the set of purported meanings of reports.



In SFAC #2, FASB argued that “better” accounting information is that information which
readers of accounting information find more useful in making their decisions. In assessing the
decision-usefulness of accounting information, FASB identified two primary aspects of
accounting information: its relevance and its reliability. | ignore relevance in this paper and
focusinstead on analyzing reliability.

SFAC #2 decomposes reliability into two components, representational faithfulness and
verifiability, and states that a third component, neutrality, interacts with these two. FASB refers
to the characterization that areliable measure will represent “what it purports to represent”
(par.59) as “representational faithfulness.” SFAC #2 goes onto describe representational
faithfulness as “ the correspondence or agreement between a measure or description and the
phenomenon it purportsto represent” (par. 63). FASB describes verifiability as “the ability
through consensus of measures to ensure that information represents what it purports to
represent, ... without bias or error” (glossary). While the conceptual framework describes
intentional bias as afactor in the verifiability and neutrality of a measure, and pertains to
representational quality, FASB distinguish representational quality from representational
faithfulness. | also ignore representational quality and bias and focus only on analyzing the
representational faithfulness of accounting information.

| purposely ignore reporting bias. People will likely communicate strategically, and prior
literature has demonstrated that the strategic nature of the communication will significantly alter
the game (see for example, Crawford and Sobel, 1982, Gigler, 1984 and Fischer and Stocken
2001). While my analysis can be extended to a strategic setting, intentional biasin reporting is
not afactor in representational faithfulness. While analyzing reporting bias is extremely
important, | believe that we need to model representational faithfulness separate from reporting
bias if we are to understand how these aspects of information differ. | justify the narrowness of
my definition of hard information because the focus of my research is not on representational

quality (par 59) or on intentional biasin reporting, but on representational faithfulness. To



address this research objective, | assume throughout this study that the decision-makers
(abbreviated as DM<s) communicate non-strategically.

Accounting research has directed attention at the notion of hard information since at |east
the early seventies when ljiri (1975) emphasized this notion in arguing that accountability was a
primary purpose of accounting measurement.” For ljiri “the lack of room for disputes over a
measure may be expressed as the hardness of a measure” (p. 36). He offers cash balances as an
example of ahard measure and goodwill as an example of a soft measure. Gjesdal (1981) defines
a soft information-reporting system as one in which the underlying information is unverifiable
while the report isjointly observed and contractible. Penno (1990), Penno and Watts (1991) and
Arya, Fellingham and Glover (1995) have also addressed hardness of accounting information,
where the unverifiability of the information drives the definition of softness. These papers do not
all use the term "hard information™ in the same way. However, al of these papers are capturing
some aspect of the notion, stated by ljiri, that a hard measure "is one constructed in such away
that it is difficult for people to disagree” (p. 36).

My approach differs from those discussed above in that they all focus on the fact that soft
information is susceptible to manipulation; my approach focuses on the fact that soft information
may be interpreted differently by different people without relying on differences in motivation.
As| discussed earlier, thisis consistent with the research objective of modeling representational
faithfulness, as opposed to modeling bias or representational quality. My approach also indicates
that verifiability may be a more complicated notion than it at first appears. For example, my
modeling of representational faithfulness shows that we may need to distinguish verifying facts
by observing them from verifying what individuals know concerning these facts.

Thisissue with the meaning of “verifiability” relates directly to the work on common

knowledge, especially Aumann (1976). An event is called common knowledge to two playersif

> ljiri (1975), page ix. Hong and Page (2001) present arelated model of incomplete perspectives
outside accounting, applying it to problem solving by teams of agents.



player one knowsiit, player two knows player one knows it, player one knows player two knows
player one knowsiit, etc. Aumann (1976) showed that if two experts have a prior probability on
some event occurring, and these probabilities are common knowledge, then they must be equal.
My research objective isto consider how individuals interpret soft information. | show that
experts may disagree about such information, which seems clearly to contradict Aumann’s
result. However, as Aumann points out, his result assumes that the information that each player
can know (i.e., their information partitions) is common knowledge. | argue below that this
assumption implicitly requires that information is hard, and therefore we need to relax it to allow
for the possibility that information may lack representational faithfulness. Thisiswhere my
initial narrow research topic broadened; this broadening requires elaboration.

Aumann (1976) defined common knowledge using an assumption commonly called the
Common Prior Assumption, or CPA.° Loosely stated, the CPA says that differencesin
probability arise solely from differences in information; people who have the same information
will assess any event as having the same probability of occurring. Aumann builds both his result
in Aumann 1976 and the result (see Aumann 1987) that every Bayesian rational equilibriumis
equivalent to a correlated equilibrium, upon the CPA. Challenging the CPA is not done lightly,
nor was it the original objective of this research. However it appears unavoidable, so let’s
discuss the CPA in more detail.

As Aumann points (page 7, Aumann 1987) the CPA does not imply all players have the
same subjective probability, but that all subjective probabilities differ only due to differencesin
information. He goes onto argue (ibid, pages 13-15) that the CPA is used because, unlike
preferences, subjective probabilities are not individual, and also because the CPA enable

researchersto “zero in on purely informational issues’ in our models. Earlier (ibid page 9),

® Harsanyi (1968) showed that a game of incomplete information is equivalent to a game of imperfect
information with nature making the initial move if and only if the CPA holds; hence thisled Aumann to
call the CPA the “Harsanyi doctrine” (see page 7 in Aumann 1987).



Aumann argues that his assumption that the information partitions of the individual playersis
common knowledge isin fact atheorem or tautology, and not an assumption. Further, he argues
that thisis part of the model and that the “situation with priorsis similar”. Aumann (1998)
expands upon these arguments in defense of the CPA in response to Gul (1998), which argued
that the CPA was an assumption, not aresult, and that it could be relaxed. Morris (1995)
provides perhaps the most thorough and el oquent discussion of the arguments for and against
relaxing the CPA. Heidentifies 3 broad arguments for the CPA but concludes that the arguments
either fail outright or hold limited sway, so that relaxing the CPA should produce useful
research. Recent research (e.g., Morris, 1994 and Morris and Shin, 2002 and 2005, and Halpern
2000) relaxes the CPA to good effect.” | do not argue why relaxing the CPA isvalid; instead, |
argue below that relaxing the CPA is necessary for us to consider situations that lack
representational faithfulness. In effect, assuming the CPA holds implies we assume
representational faithfulness holds.

The research in this paper is also related to aline of behavioral accounting research that
addresses the form managers use to present their information. This line of research has shown
that the form of the information being communicated may affect how users of the information
interpret it. The different types of communication that have been studied are quite varied, and
include the form taken by earnings forecast (Hirst, Koonce and Miller, 1999), environmental
disclosures (Kennedy, Mitchell and Sefcik, 1998) and comprehensive income disclosures (Hirst
and Hopkins, 1998), among others. My finding that soft information involves a language that
itself affects how DM s interpret the information is consistent with this research. Hence, the

modeling of hard information in this paper complements this research, and in so doing, offers a

! Halpern (2000) investigates two characterizations of the CPA, including one based on alogical
language, and shows they differ over infinite spaces. Morris (1994) investigates how “no trade” theorems
under heterogeneous beliefs, Morris and Shin (2002) look at the socia value of public information under
heterogeneous beliefs, and Morris and Shin (2005) construct a set of “interaction games’ that generalize
different types of heterogeneity.



way to connect this behavioral research to an analytical framework.

Other related research also stretches the range of possible decision-making criteria. Ina
closely related study, Stecher (2005) constructs an economy with subjective informational
assumption and shows that the welfare theorems will not hold in this economy. Gilboa and
Schmeidler (1995) offer a decision theory that is“ Case Based,” where the decision-maker uses a
similarity function to organize his decisions prior to taking his actions. Hong and Page (2001)
show that behavioral diversity can arise due to the type of game ensemble a player has
historically played. The current paper brings the language that DM s use into the framework for
describing how DMs know and how they communicate their knowledge, so complements these

other studies as well.

3. Resear ch Methodology and the Basic M odel
3.1 An Example of the Hard/Soft Information Distinction

To convey what is meant by hard or soft information, consider an example of valuing a
piece of equipment for financial statement purposes using historical cost or fair value
accounting. For the purposes of this example, assume that fair value accounting requires the
manager to identify a comparable asset and then report the fair market value of this comparable
asset. Suppose a manager purchases the equipment for a cost $10 and estimates that the
equipment has a life of two years and no salvage value. At the end of year one, the manager
would report a historical cost for this asset of $5 under straight line depreciation, and any auditor
would agree with this valuation. Next, suppose the manager reports $5 under fair value
accounting as well. Because thisis based on identifying a“comparable” asset, there is ambiguity
in the report, even though the actual amount is the same as it is under historical cost. An auditor
auditing the fair value amount would need to acquire estimates of the “comparable” asset, and
then assess whether the $5 was a reasonable valuation for the equivalent asset. In fact, had the

manager reported $6 or $4, it is often the case that the auditor would still have agreed with the



valuation precisely because there is ambiguity in the application of the term “comparable.”

This example highlights two points. First, a soft measure does not depend on the presence
of incentives. The presence of a disagreement in the preceding example does not necessarily
imply that reports are being purposely distorted as a result of differing incentives; the DMs may
honestly disagree. Nor does verifying the process necessarily resolve the disagreement.
Verification may clarify that a disagreement exists, but resolving the disagreement requires that
the DM s agree on what is meant by a comparable asset. This leads to the second point.

This study focuses not on what a DM observes, but on how he communicates what he
observes and how this communication is interpreted. The example illustrates that the hardness of
information is intimately related to the language or message space involved. Changing the set of
messages or changing the manner in which the DM s associate their knowledge with the
messages can affect whether the information is hard or not.

At first glance, one might think that fair value accounting merely adds noise to the report,
but | believe the difference between historical cost and fair value accounting in the exampleis
subtler. The difference actually relates to how the inference process of the auditor, or any
financia statement reader, differs from that of the manager, or financial statement preparer. To
seethis, | first introduce the formal notation and the basic model. Then | reconsider the example

of asset valuation to clarify the subtlety that | think actually exists.

3.2 Basic Modd:
Let (©, p) be afinite probability spaceand let S and G be partitions over the states of

theworld Q presenting the information partitions of the manager and the auditor, respectively.

For each state, w € Q, let s(w) and g(w) denote the element of S and G, respectively, that

contains o . Suppose that these two players communicate using a language or message set
denoted as M , where the manager can issue message m, e M . | assume that the message set has

cardinality N, denoted as [M|=N, sothat M ={m, }U,.,.,, . T issue the message, the manager

10



uses his knowledge of the current state of the world. We can describe the process of issuing a
report as a mapping from the manager’ s information partition into the set of possible messages,

while a similar mapping exists for the auditor. Denote these mappingsas ¢:S —- M and

7:G — M, and call them the signaling functions of the manager and auditor, respectively, so
that, if the current state of the world is @ € Q, then the manager reports o(s(z))=m, . Using the
notation introduced above, define y =(Q, p,S,G,M,o,y) asthe“language-form” that represents
the accounting method being employed. To model representational faithfulness, | need to specify

what each message “purportsto be.” | do this by introducing the notion of an “anchor” set.

A1 (Assumption of an Anchor Set): For each language form y =(, p,S,G,M,,7),
assume there existsaset, X" < Q, with x " :{xﬁ" }UKnSN and where for each element, x' , the

M M

following holds: o(s(x* ))=m, = »(g(x" )

| call x!" the anchor of message m,, or alternatively, | say that message m, isanchored at x' .

The cardinality of the anchor set equals the cardinality of the message set, so that each message
isanchored at one, and only one, anchor.

The anchor set specifies a set of states of the world about which the manager and auditor
can agree when using message set M . The introduction of anchors accomplishes two tasks.
Firgt, it ensures that the two players can communicate at some basic level. For example, when
one player says “black” the second player knows that he does not mean “white.” Second, in
order to formally model representational faithfulness, | need to specify a set of states of the
world that describe the phenomenon that the messages “ purport to represent.” The anchor set
fillsthisrole.

As stated earlier, | assume that the DMs communicate non-strategically. Specificaly, |
assume both players can communicate, that is, can write and read the language, and do it
honestly. The following assumptions on the signaling functions ensure that thisis the case.

11



A2 (Signaling Functions Assumptions): For any language form,  =(Q, p,S,G,M,o,7)
assume the following holds for the signaling function of the manager, ¢:S - M :

) o:S— M issurjectiveor onto, or Vm, e M,3seS>c(s)=m

n-

i) c:S—>M ishonest,or Vo eQ, wemn:a(s(a))):m

n-

Analogous conditions hold for the signaling function, y : G — M , of the auditor.

Assuming the information partitions of each DM form the domain of their signaling function
ensures that they can write in the message set. Condition i), the assumption that the functions are
surjective, ensures the DMs can read in this message set while condition ii) ensures that they will
not purposely report dishonestly. | use assumptions A1 on the anchor set and A2 on the signaling
functions to specify what is meant by a representationally faithful accounting method. | simplify
the subsequent analysis by referring to a representationally faithful message as “hard,” and a

message that lacks representational faithfulness as a* soft” message.

3.3 Definition of the Hard/Soft Information Distinction:

To motivate the hard information definition, reconsider the example comparing two
accounting methods for reporting asset value, historical cost and fair value accounting. We use
language forms, z, =(Q, p,S,G,M 0,7y ) ad ¢ =(Q,p,S,G,M,0r,7¢ ), to represent
these methods, where the subscripts denote accounting under the historical cost and fair value
methods, respectively. Thismeansthat m,, , eM_, cR” and m. , e M cR" denote the report
or message issued by the manager under historical cost and fair value accounting, respectively.
Denote the message mappings of the manager and auditor under historical cost accounting as
oy :S—>My and y, :G—> My, respectively. Analogous mappings exist that describe how
reports are issued under fair value accounting.

What prevents disagreements when the manager reports under historical cost, and what

12



makes historical cost “hard,” isthat, in every state of the world, the auditor always reports the

same message as the manager. More formally, suppose the manager “knows’ the element of his

partition that contains the state of the world, s(w) and reports o, (s(@))=m,, , eM,, . Seeing the

historical cost report m,, ,, the auditor uses the inverse of her message mapping, 7;': M, -G,

to infer the element of her information partition that contains the current state of the world.
Under a hard reporting system such as historical cost is assumed to be, the auditor will infer the

element g(w), that is, we will have g(w)e y;t(m,, ,). Under fair value accounting this may not be

true, that is, the auditor may infer that a different element of her information partition describes

the current state of the world. Formally, this meansthat g(w)¢ +(m ,) may hold. Thisintuitive

notion of hard information leads to the following formal definition.

Definition of Hardness: A language form y =(Q, p,S,G,M,o,y) ishard if for all

messages m, e M and for all states w e Q we have m, = (s(w)) > m, = y(g(w)).

As noted earlier, | rule out the possibility of strategic message choice via assumptions A1 and
A2. This means that, by assumption, hardnessis not a choice variable, but an exogenous
characteristic of the language form. | will sometimes say a message set is hard, with the
understanding that this means the language form is hard.

My definition of hard information coincides with the requirements for information to be
hard laid out by Ijiri (1975). ljiri describes hard measurement as the “ processing of verifiable
facts by justifiable rulesin arigid system which allows only a unique set of rulesfor agiven
situation” (page 36). The rules are the signaling functions, which are unique for each DM. The
fact isthe state of the world that is observed by the DMs. My definition ensures that, under a
hard language form, these facts can be communicated so that each DM “knows’ the fact in the
same way. However, under a soft language form, as | defineit, the facts will not be “verifiable”
in the usually sense of thisword.

13



Within the context of my model, a DM can verify a“fact” or event by observing it.
Further, one DM can verify that a second DM “knows’ this event by observing that the second
DM observed the event. However, one DM may not be able to verify that the second DM
“knows’ the event in the same way as the first DM “knows’ it. The DMs know the state of the
world through the filter of their own information partition, but understanding what the other DM
“knows’ requires that this information be communicated and that the message be interpreted.
With soft information, DMs interpret thisinformation differently. Different interpretations are
possible because we no longer assume the DMs' information partitions are common knowledge.
| return to this point when | relate hard information to the notion of common knowledge in
Section 4.1 below.

While | define hardness in terms of the signaling functions, we can also speak about the
inverse mappings, that is the mappings that take the reports into the information partitions.

Denote these inverse mappingsas ¢ *:M — S and y*:M — G for the manager and auditor

respectively. | now introduce another definition that proves useful in subsequent analysis.

Definition of Inver se M essage Sets: For language-form y =(Q, p,S,G,M,o,), define
the inverse message sets for the manager and auditor as s™ ={is" |___ }and c" ={lg" |_._. ],

respectively, where sV ={560‘1(mn)} and g ={g ey‘l(mn)}.

This definition introduces message-equivalent signal spaces, which are the set of signals
which can be communicated between DMs using a given message space. In this model, one
DM's knowledge is knowable by another DM if and only if it can be communicated. Hence,
these information partitions are the relevant ones for understanding the information that one DM
knows that can be communicated using the given language. The importance of these setsis
discussed in more detail below, especially in connection with Corollary 1, where | show that
message-equivalent information partitions are identical if and only if the message space is hard.

14



4. Results

The results are presented in two sections. In section 4.1, | start by presenting the basic
representation result concerning hard message sets, and show how soft messages allow for
disagreement. In section 4.2, | present definitions of relative hardness, and extend the analysisto

show how the different measures of relative hardness can be used

4.1. Basic Resultson Hardness

The first question that we wish to answer is whether the hardness of information is
related to the message set used. In answering this question, direct message sets are important. A
direct message set isdefinedas M =Q. | will write M <Q to indicate that the set of states of the
world is arefinement of the message set. The intuition is that hardness and directness are

equivalent characteristics, and this intuition is formalized in the following theorem.

Theorem 1: A language-form y =(Q, p,S,G,M,o,7) ishard if and only if there exists a
second language form, » =(Q,p,$,G,M",c",7'), where M'<Q and M' isisomorphicto M , so

that o7*(m,)=c""(m',) and y*(m,)=»"""(m', ) for each n=1,..N (See Appendix for all proofs.)

Theorem 1 states that an accounting method generates hard information if and only if the
language is a direct representation of the states of the world. It is obvious that this condition
suffices to ensure hardness, since we assume truth-telling by the DMs. The necessity of this
condition is perhaps more surprising. It seemsto be in the nature of virtually every language to
include some messages that cannot be defined solely in terms of states of the world. For
example, consider the formal definition of assets as “future benefits” While the term future
benefits can be associated with certain states of the world, it seemsimpossible to construct an
exhaustive list of states such that a future benefit exists if and only if one of these states occurs.

15



Theorem 1 tells that unless such alist can be constructed, the term future benefits lacks
representational faithfulness.

Alternatively, Theorem 1 says that a necessary and sufficient condition for information to
be soft is that the language form involves communicating using ambiguous messages in the
sense that they have no specific meaning or definition in terms of the states of the world, but are
nonetheless decision-relevant.? In fact, it is their ambiguity that enables these messages to
convey meaning outside of the “knowledge” represented by the set of states of the world. Once
we assume that the message set is a coarsening of the direct message set, the possibility that an
intelligent and honest player may use his judgement in reporting a signal about the state of the
world can be ruled out; he merely repeats the state itself. However, if in our language thereis a
word that is not definable in terms of specific states of the world and if thisword is relevant to
some decision, then that decision involves soft information.

Theorem 1 also highlights a relationship among the information partitions and the

message space, which is formalized in the following corollary.

Corollary 1. A message space is hard with respect to two information structuresif and

only if the message-equivalent information partitions are equivalent.

Corollary 1 redefines hardness, so that it merely restates Theorem 1, but in so doing, it
highlights how hardness relates to information partitions S and G . First, Corollary 1 tells us that

only the message-equivalent sets S™ and G™ matter for determining hardness, not S and G .

8 Similar to “future benefits,” the term “fair market value of a comparable asset” in the example of
valuing an asset is an ambiguous yet decision-relevant message if we cannot completely define thisterm
viaalist of states of the world. For some assets, such a definition may be possible. For example, the fair
value of aused car can be found from its “blue book” value. However, in this case the phrase “fair value
of acomparable asset” would be replaced by the phrase “the blue book value of aused car of the same
make, model, and year.” Using an anal ogous argument, the “fair value of a common share of IBM stock”
may be considered hard information, if it is understood to mean the quote on the NY SE, or it could be
considered soft information if this value is based on a subjective assessment by management.

16



Informally speaking, we do not care what the DMs know, only what they can communi cate.
Second, it isclear that M'=S" =G" isa(weak) coarsening of both S and G . Corollary 1 tells
us that the opportunity to communicate knowledge as hard information is restricted to
information that can be represented by an information partition that is a common coarsening of
the information partitions of the DMs involved. Hence, the DMS may have information
partitions that preclude the existence of any non-trivial accounting method that has
representational faithfulness.

Two additional points follow almost immediately from Theorem 1 and Corollary 1.
These points concern how the hard-soft distinction relates to the fineness criterion and to the
notion of common knowledge of events. | discuss each of these in turn.

First based on a casua notion of hardness, one might think initially that hardnessis
equivalent to the notion of fineness: Corollary 1 shows otherwise. Simple examples demonstrate
that having comparable information partitions, that is, being able to rank the original information
partitions based on fineness, is neither a necessary nor a sufficient condition for the message set
to be hard. First, if the message set is a singleton, so that the same message is always reported,
thenitisclearly hard. Thisholds even if partitions S and G are not comparable. Next, suppose
M ={m;,m,} andlet S={s,,s,,s,} bearefinement of G=1{g,,9,} where s, =g,. and
s, Us; =0, and supposethat s, isthe state of the world. Then it is clearly possible that
o(@)=m, #m, = y(w), so that comparability of the information partitions does not imply
hardness. The independence of the hard/soft distinction from the finenessis particularly
interesting, as fineness of an information partition is often associated with the informativeness of
asignal, in Blackwell’ s sense. | return to this point when | derive relative measures of hardness
in the next section.

The second point following from Theorem 1 and Corollary 1 isthat hardnessis also
independent of the notion of common knowledge. To see this, consider a situation, due to

Aumann (1976), where disagreement isimpossible. Let (Q, p) be afinite probability space and
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let S and G be partitions over the states of the world Q presenting the information of two

players. Let R be the meet or finest common coarsening of these two partitions, written in

standard notation as R =S A G . For each state of theworld, w € Q, let s(w) denote the element
of S that contains « , and let g(w) and r(w) denote similar relations for those partitions.
Aumann proposed the following definition for common knowledge. Call an event, Ac Q
common knowledge for the two playersat w e Q if r(w)c A holds. Aumann then used this
definition to prove that two experts cannot “agree to disagree.” Formally, hisresult is given as

follows:

Proposition (see Theorem 1 in Milgrom 1981): Suppose that for some event Ac Q and
state w € Q, it iscommon knowledge at w € Q that p(A|S)=a and p(A|G)=4.Then a=4.

Thisresult saysthat if two experts have a prior probability on some event occurring, and these
probabilities are common knowledge, then they must be equal. Theorem 1 seems clearly at odds
with this result. We can trace the source of this conflict to what we assume to be common
knowledge under each approach.

The approach in this paper conflicts with Aumann’s approach because | separate what the
players know from what they can communicate. Aumann assumes that the information partitions
of the two experts are themselves common knowledge. He acknowledges this fact, saying that
“worthy of note is the implicit assumption that the information partitions... are themselves
common knowledge” (see page 1237). He claims that the assumption can be made without loss
of generality since “included in the full description of the state w € Q of the world is the manner
in which information isimparted to the two players’ (page 1237). In making this assumption,
Aumann implicitly assumes the players communicate using a hard language.

| relax the assumption that the information partitions are common knowledge and replace
it with the weaker assumption that the language is common knowledge. Each individual can
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know an event, but the first DM cannot know what the second DM knows, only what the second
DM says she knows. By shifting the focus from the common knowledge of an event to the
common knowledge of the report of an event, | shift the focus from the players’ information
partition to their inverse image sets. As Corollary 1 shows, the two DMs always agree about the
report of eventsif and only if the inverse image sets are identical, that is, if and only if the
message set is hard. Further, an event may be common knowledge for two players, yet they may
disagree in their reporting of this event. Hence, the notion of whether or not the event is common
knowledge is distinct from whether or not the report of this event is hard or soft. While the
concept of common knowledge remains important, it seems that the latter criterion is the relevant
one when investigating whether or not experts will agree on reported information.

The attractiveness of using information structures to describe the distinction between
hard and soft information is its generality. However, this approach does not quantify hardness. In

the next section, | address the latter difficulty at the cost of some generality.

4.2. Measures of Relative Hardness

This section provides a measure relative hardness. In my definition of relative hardness, |
use the probability distribution defined over the inverse image sets of the DMs. Defining
hardness based solely on the underlying probability distribution allows a quantification of
hardness. Prior to this point in the analysis, hardness has been defined only in terms of sets and
functions and only in absolute terms. Showing an equivalent definition in terms of probabilities
may convey more intuition about hardness, and it relates the hardness concept to alarge body of
literature. Further quantifying hardness allows us to speak of relatively harder or softer message

sets, increasing the potential usefulness of the concept.

Use the conditional probabilities defined on the inverse messages sets of the two DM,

(i.e., p(skM gV ),where s =o*(m, ) and g =»*(m,)) to define relative hardness as follows.
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Definition of Relative Hardness: Consider two language-forms, y =(Q,p,S,G,M,c,7)

and z'=(Q,p,S',G,M,c",y) with the same anchor set, so that vn, both s, and s', are anchored

M
n

at x) . Define y asharder than y' if, for the elements of theinverseimage sets, g\ <GV, s
and s es™ and s') and s} €s'M, the following hold:

a pls)' 19} )= pls 191" )= pls 19y ), and

b. pls [gM)< pls'} [g™ ), with at least one inequality strict.

In general, the definition of relative hardness introduced above does not completely order a set of
standards. We shall call two language forms compatible if they can be ranked using the above
definition of relative hardness.

One can understand the intuition behind the definition most easily by recognizing that the
definition of relative hardness is analogous to the notion of mean-preserving spreads. One
distribution is a mean-preserving spread of a second distribution if the first distribution spreads
the probability from realizations closer to the mean to realizations farther from the mean, while
keeping the mean the same. In the above definition, the language forms differ only by the
signaling function of the first DM. Instead of spreading the probability around the mean, softer
information systems spread the probability of each conditional distribution of the first DM’s
signals around the second DM’ s signal.

Reconsider the example of valuing an asset used in Section 3 to motivate the definition of

absolute hardness. Suppose for simplicity that the asset’ s value is either low or high, denoted as

m, or m,, respectively. When message m,, is reported, the manager and auditor infer the inverse
image message denoted as s, and g, , respectively, under accounting method Y = {H,F},
where as before H represents historical cost and F represents fair value accounting. If, as
earlier assumed, historical cost accounting is perfectly hard, this means

p(sml | gml)zlz p(sz |9|:A,2)’ while p(S.“f,z |9|'\4A,1)=0= p(sml | 9”2)- Suppose that fair value
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accounting is soft, so that under fair value accounting, the inferences of the manager and auditor

agree 80% of the time for alow valuation and 75% of the time for a high valuation. This means

that when the auditor infers alow valuation, we have p(sé"’1 lg E”‘l)z 8 and 2= p(sﬁ”vz lg 2”,1), while
when she infers a high valuation, we have .25= p(sé”y1 lg 2”,2) and p(sé”,2 lg Q”,z)z 75.
In general, a softer language form reduces the probability of a same message outcome,
p(s,?” lg) ) and raises the probability of a different message outcome. Hence, the perfectly hard
message set has p(srﬁ" lgM ):1 for k=n and p(slf" gV ):O for k=1..,n-1,n+1.. N.As

discussed below, it seems natural to define a message set of maximal softness as one that has
p(s,ﬁ" gV ):% foral n=1..,N and k=1,...,N.

| begin the analysis of the results of this section by showing that a harder language form

ismore informative in Blackwell’ s sense. Thisis done in the following theorem.

Theorem 2: Suppose y isrelatively harder than »' as given in the definition above.

Then utility maximizing DMs prefer the relatively harder language form y to z'.

Theorem 2 says that a harder message space produces signals that can be used by aDM
to increase his expected utility. The intuition follows again by recalling the analogy of relative
hardness to the notion of mean-preserving spreads. Just as mean-preserving spreads lower
expected utility, so do softer message sets.

A valuable aspect of Theorem 2 isthat it says a harder message set produces signals that
are more informative, in the Blackwell sense, even though the information partitions of the two

DM’ s may not be comparable.® Blackwell defined one signal as being more informative than a

° Blackwell (1951) provided necessary and sufficient conditions under which ranking message sets by
their informativenes is equivalent to ranking them by fineness. More specifically, Blackwell considered
the case where there were two signals, s€S and g e G, and adecision-relevant variable xe X , and a

probability distribution p defined over these variables. He assumed that the signals were noiseless, so

that p(g|x)=1or p(g|x)=0 and p(s|x)=1 or p(s|x)=0 held for &l realizations of the variables.

Blackwell showed that S wasrelatively more informativethan G if and only if S was arefinement of
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second signal if thefirst signal enables the DM to obtain a higher expected utility. Theorem 2
may seem surprising, since Blackwell’ s famous result is often interpreted to mean that
information systems can be ranked based on their informativeness only if the signals are
comparable.’ Theorem 2 demonstrates that thisis not so if signals are noisy. Informally, anoisy
signal is one that provides imperfect information about a decision-relevant variable (see note 7
for aformal definition of noiseless signals). For example, in the earlier discussion of valuing an
asset, the decision-relevant information might be the cash flow that the asset will generate. The
historical cost of the asset would be considered anoiseless signal if only one historical cost
amount is possible for each actual cash flow realization.

In general, we expect most signalsin accounting to be noisy signals, and not to provide
perfect information. Theorem 2 states that compatible information systems, that is, those that can
be ranked by relative hardness, can be ranked in terms of their informativeness even though they
may include noisy signals. Hence it offers away to partially order information partitions and
message sets that is qualitatively different than the fineness criteria.

The second approach to measuring hardness uses the concept of entropy.** For any

arbitrary probability distribution, p(y, ), with finite support y, Y for n=1....,N , denote the

entropy of this distribution as H(p(y, ), where the entropy is given by the following formula

H(p(y,))=—3" (ply, )- In(p(y, )20

n=1
For this second measure of relative hardness, | again use the conditional probabilities defined on

the inverse message sets of the two DMs. Using these probabilities, let

His™ 192 )= H(plst 193 )=-3(plst 19 )-tn(plst 192)

k=1

G . Marschak and Miyasawa (1968), McGuire (1972), Green and Stokey (1977) and Malueg (1985)
clarify that assuming noiseless signalsis an indispensable condition for refinement to be a necessary
condition for relative informativeness. In my model, | relax the assumption that the signals are noiseless.
19 Demski (1973) applies Blackwell's theorem to accounting using this perspective.

1 As Khinchin (57) points out, the entropy concept first arose from the attempt to create a theoretical
model for the transmission of information.
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denote the entropy of the conditional probability distribution p(skM gV ) and let

(s 16M)= 3 olo (s 192 )

n=1
denote the expected value of the entropy of this conditional-probability distribution. Using these
measures, we have the following result that describes relatively hard message setsin terms of the

entropy of the conditional distributions.

Theorem 3: Language-form » =(Q, p,S,G,M,o,7) ishard if and only if H(SM |G ):0.
Also, if y iscompatible with a second language form, '=(Q, p,S,G,M,o",7), then y isharder

than ;' if and only if 0<H(S™ |GM )<H(s™ |G" ).

Theorem 3 provides a second and equivalent measure of relative hardness using the entropy of
the conditional distributions over the inverse image sets. The previous analogy between mean
preserving spreads and relative hardness again conveys the intuition of the result. The entropy of
adistribution increases as we spread the probability among all the realizations, reaching a
maximum when all realizations are equally likely. Under a softer language form, the probability

of the conditional distribution is spread among the unanchored realizations. So, for example,

given the auditor infers the inverse image message g, , a softer language form would decrease

the probability p(srﬁ" lgN ) and increase the probabilities p(skM gV ) for k #n. The entropy of the

conditional distribution captures and quantifies the impact of changesin hardness.

Theorem 3 offers additional intuition into the notion of hardness, as well as potential
practical benefits. First, the entropy of adistribution is often interpreted to be a measure of
uncertainty, so that Theorem 3 shows that harder language forms involve less uncertainty under
thisinterpretation. Second, the entropy measure of relative hardness may be easier to calculate
than the Blackwell measure. However, while the ordinal ranking clearly holds, it is not clear
what, if anything, can be inferred from the cardinal values of the entropy measure. For example,

it isnot clear how we should interpret the quantitative difference in hardness between two
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language forms if 2H(SM |GV ): H(S‘M |GV ) holds.

Theorems 2 and 3 together provide alink between Blackwell’ s measure of relative
informativeness and the entropy measure; to my knowledge thisis the first time such alink has
been established. The key to establishing thislink is, of course, the construction of the anchor
set. The anchors formally establish a set of states of the world that represent what each message
“purports to represent.” By doing so, we are able to provide a non-trivia role for the accounting
notion of representational faithfulness. The importance of building aforma model of
representational faithfulness is underscored by Aumann’s earlier result demonstrating conditions
under which experts could not disagree. As the preceding results demonstrate, experts can
disagree if the language they use is soft. Further, the relative level of disagreement can be rank-
ordered. Hence, this model offers the potential for a comparative analysis of accounting

standards based on their relative representational faithfulness.

5. Summary and Suggestionsfor Future Resear ch

The objective of this paper was to develop amodel of representational faithfulness by
formally distinguishing between hard and soft information. The intuition for this distinction and
the formal model were presented in Section 3 and | present the result of my analysisin Section 4.
Theorem 1 showed that a necessary and sufficient condition for information to be soft was that
the information be communicated using a nonsensical symbol. By nonsensical | mean a symbol
that cannot be defined in terms of the states of the world, but which was nonetheless relevant to
the decision-maker. | also showed that the comparability of the information partitions was
neither a necessary nor a sufficient condition for the message space to be hard. Further | showed
that whether or not an event is common knowledge does not dictate whether that event could be
represented by a hard message.

| also investigated the relationship between hard information as defined on information
partitions and the underlying probability distribution, and defined a measure of relative hardness.
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Theorem 2 showed that a harder language form would generate a more informative signal, using
Blackwell’ s notion of relative informativeness. Theorem 3 showed not only that the entropy of
the conditional probability distribution offered an equivalent definition of hard information, but
also that entropy could be used to rank order the language formsin terms of their relative
hardness. Hence, entropy quantified hardness, and provides a quantification of relative
informativeness in Blackwell’ s sense. Although no specific applications of the hard/soft
distinction in information have been formally developed, numerous research questions might
benefit from the concept of soft information. | describe afew in more detail.

In SFAC #2, FASB offer the use of fair value or replacement cost for valuing assets as an
explicit example of the difficulties faced when accountants attempt to achieve representational
faithfulness. However, thisis just one example where the representational faithfulness of an
accounting construct may be gquestioned. The procedures for estimating most reserves, such as a
reserve on uncollectible receivables, inventory obsolescence, warranties and sales returns, or a
reserve for litigation may all be described as examples that require accountants to clarify the
representational faithfulness of the accounting information reported. Also the efficacy of
standards, both auditing and accounting, might be analyzed using this distinction. In particular,
modeling hard information as representational faithfulness may be afirst step in constructing an
analytical framework that corresponds to the conceptual framework of financial reporting
provided in the Statements of Financial Accounting Concepts.

Second, the effect of the hard/soft information distinction on the role of public
accountants is particularly interesting. Often research portrays the role of public auditors as
verifying unobservable signals and then focuses on possible collusion between the manager and
the auditor against the investor, resulting in misrepresentations to the investor. While blatant
collusion such as fraud clearly exists, most such collusion seems subtler, and more difficult to
analyze within the current auditing models. For example, current approaches do not model well
the possibility of honest disagreements between knowledgeabl e parties, on which most lawsuits
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rest. The hard/soft distinction in information offers an approach to formalize the demand for
expert opinions (including lawyers and economists as well as auditors). It also offers away to
explicitly model judgement or subjective evaluation of information that must be a part of any
complete model of auditing. Auditing expertise may be related to soft information. An auditor
does more than verify the accuracy of numbersin the financial statements; she also judges
whether or not they are accumulated in accordance with GAAP on a consistent basis. If all
people interpret information in the same way, then no judgement is required of the auditor: only
with soft information does the auditor's judgement and expertise play arole.*?

Third, in the standard principal-agent model, the incentive problem arises solely because
the agent’ s effort is unobservable by the principal. An equally valid description of the problem
might be that the agent’s effort is soft information. Thus even if the agent was honest, difficulty
in contracting may arise. Further, these two different problems may arise simultaneously. The
contract that solves the incentive problem when the action is unobservable may (or may not) be
the same as the optimal contract when the outcome of the action is soft information.

The three areas discussed above are only afew of the areas to which the hard/soft
information distinction might be applied. Other areas include work on incomplete contracting,
valuation, bounded rationality, common knowledge, and the mechanism design literature's
analysis of the information requirements for implementation of an equilibrium, to name a few.
For example, the hard/soft distinction can be easily extended to the framework of a Bayesian
communication game, which has been applied to the principal-agent model (Myerson, (1982)) as
well asto the mechanism-design literature (Reiter and Reichelstein, (1988)). Among other
results, it is straightforward to show that the revelation principle will fail if information is soft,

but holds for hard information. Thus the approach appears very flexible.

12 See Caplan and Kirschenheiter (2004) for an application of the hardness criteria to auditing expertise.
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Table 1: Notation
set of states of the world, with @ e QO being a specific state of the world.

probability distribution defined over set of states of the world, so that p: Q —[07].

Information partition of player one, called the manager, having elements seS . Similarly

g e G istheinformation partition of player 2, called the auditor. | write S<Q and G<Q
to indicate that both partitions are coarsenings of the set of states of the world.

message set, with cardinality N, denoted as |[M|= N, and composed of messages m, for
n=1..,N,sothat M={m,}_ ..

Signaling function for player 1 where o: S — M . An analogous signaling function exists

for player 2andisdenotedas y:G - M .

Language form, composed of the set of states of the world, probability distribution over
this set, information partitions for the playersinvolved, a message set and signaling
functions for the players, sothat 7 =(Q, p,S,G,M,o,7).

Anchor set for message set M . Anchor sets are subsets of the set of states of the world,

or X" cQ, and have elements x)' for n=1..,N, sothat X" :{xﬁ" }KnSN
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APPENDIX

Proof of Theorem 1. The proof utilizes alemmathat is first introduced and proved.

Lemma 1: A language-form, y=(Q,p,S,G,M,c,y),ishardif M <Q.

Proof (of lemma 1): To show that y ishard, we need to show Vo e Q and vm, e M that
o(s(w))=m, if and only if y(g(ew))=m,.1f M <Q, then Vo e Q there exists a unique message,
m, € M , such that w e m, . By truthful reporting, that is, by condition ii) in assumption A2, we
have o(s(w))=m, if and only if @ em, while y(g(w))=m, holds under the same conditions.
Sincethisholds Vo e Q and vm, e M , we havethat » ishard asrequired, completing the proof

of lemmal

Turning now to the proof of the theorem itself, we begin with sufficiency and follow with
necessity. Let M' be defined asin the theorem 1. Since M* isacoarsening of the set of states of

theworld, orM'<Q, we havethat '=(Q, p,S,G,M",o",y') ishard. Also, M isomorphicto M
meansthat Vo e Q we havethat o(s(w))=m, =o' (s(w)) and that y(g(ew))=m, =»'(g(@)), which
impliesthat y =(Q, p,S,G,M,o,y) isaso hard.

Let y=(Q, p,S,G,M,q,y) be hard. Consider the message set M'=S" , where
M'= {{snM }KHSN } and where s)' = {5ea‘1(mn)} holds vm, € M . From the functions »': G - M'
and ¢':S —M" by setting y *(m,)=y""(m',) and o *(m,)=c""*(m",) for n=1,..,N . Clearly

M'<Q, so the language form, »'=(Q, p,S,G,M",c",7")is also hard, completing the proof of
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theorem 1.

Proof of Corollary 1. The proof follows immediately from Theorem 1 once we note that

the messages set defined in Theorem 1 insuresthat M'=s™ =G .
Proof of Theorem 2: The proof utilizes alemmathat is first introduced and proved.

Lemma2: Let y=(Q,p,S,G,M,o0,7) and 7' =(Q,p,S,G,M,c',y) betwo language

forms that have the same anchor set, {xn“" } = XM = Q where y isharder than »'. This

1<n<N
means that, for the elements of the inverse image sets determined by each pair of anchors,

x)', x' e XM thefollowing hold:

with at least one inequality strict. y isharder than ' impliesthat there existsa N x N Markov

matrix, B, having elements b, where vg)' eG", vs}' eS™ and vs'}' es'" thefollowing

holds: p(s'ﬁ” |g2”)=i(|0(5,-M |gr’1\/|)><bjk)'

j=1

Proof of Lemma 2: Using the assumed existence of an anchor set, we will show that this
together with the definition of relative hardness suffice to imply there exists a markov matrix B
as described in the lemma. The proof is by construction, and can be informally explained as

follows. First | show that B can be written in terms of the elements of the two conditional
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probability matrices. Second, | show that the elementsin the columns of the B matrix sum to
one. Third, I show that the elements of B are between 0 and 1. Thisfinal step isthe complicated
one. | use an algorithm where | start by writing each of the equations so that al have zero on the
right-hand side but one. The first element is negative but the remaining elements of the B matrix
may be either positive or negative. Then | zero out al of the off diagonal elements of B, except
for the first element, until only the diagonal elements are left and the first column are left. In this
manner, | show that all the elements are positive but less than 1, and this completes the proof.

To simplify the notation, without |oss of generalization, let P and P' denote the matrices
of conditional distributions, where P is harder than P' . Asis usual, denote the n™ row and m"

column of the P matrix as p,,, , and similarly for the P' matrix, so that,

Pu P - P p(51M |91M) pESQA |91M; o plsy |91Mg
p_ P P2z = Pan |_ p(SlM |X2) plsy' 197’ plsy 197’

Pnt Pnz o P p(SlM |XN) p(sgl |g|'\\1/|) p(SklA |9M)
and

Pu P - P p(sllvl |91M) pgs'g" |91M; DESIII\\JA |91Mg
P P P o P _ p(s'y’ |X2) pls'y 193" ) - pls'N 193

P Plaz o Pl p(S‘]'YllxN) p(S'2 IgN) p(SIN |9N)
Asis standard, the row element indicates the conditioning variable and the column element
indicates the realization of the random variable, so for example, p,, = p(sn“{' g ) This means

that for eachrow in P and P', the sum of the row elements equals one. If B exists, we have
PxB=P'.

To show B ismarkov, we need to show that such a B exists where each element is non-negative
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and the rows sum to one, or more specifically, where the following two conditions hold,
N
App.i) > b =1foreachj, and
k=1

App.ii) 0<b, <1 for each b, .
As above, the b, element isin thej™ row and k™ column of the B matrix.
First, to show that such amatrix exists, it suffices to show that a solution exists for the
N x N linear equations of the form
Pl + Probok +-+ PPk = Pk -
By definition of relative hardness, thereexist N x N numbers, ¢, , each lessthan 1 in absolute

value, defined as p,, = p'. —&. » Where ¢, >0, with at least oneinequality strict, where ¢, <0

N
if k=n,agan, with at least on inequality strict, and Vj, Zgnk =0. Further, by definition, vk,n
k=1

wehave p,, >p, ad p'.,,>p',,Sothatinparticular, p,, >0. Thisholds vn, and in particular
for n= j. Substituting back into the equation, we have
Piby + PP+ + PO =P k=P — €k -

Hence, we can write the element b, asfollows:

Pik =€k _Z(pjmbmk)

b. — m#j

Pjj

Since p; >0, this proves the B matrix exists.

N
For condition App.i), i.e. to show ijk =1 for each j, note that we have j=1....,N
k=1

equationswhere p';, —p; =-¢; . Substituting for p*; from above, each of these equations can
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be written as follows:
pjl(b11_1)+ Pioby ++ Pinby =—¢p
Pjiby + pjz(b22_1)+"'+ Pinbnz =—¢j2
Pjabiy + Pjoboy +-+ Py (bNN _1):_5“\1

Summing these equations, we get

N N N N
pjl(zblk _1J+ ij(zbZk _1J+”‘+ Pin (Zka _1J=_25j120-
k=1 k=1 k=1

k=1

There are N such equalities, with p; >0 for the j™ equation, so that the system of equationsis
N

solved by > by, =1 for all j.
k=1

For condition App.ii), i.e. to show 0<b; <1 for each b, . First, note that the product of

two markov matricesisitself markov. This means that we can focus on the case where P and P’

differ only by two elements. Again, without loss of generalization, let p,;, > p'y;, P, <p'y,, @nd

py, = 'y for al other elements of the matrices (i.e. for al n>1 or j>2). Since p,; = p',; for

Inj
n>1or j>2,theb, elementsof the B matrix for j>1 or k>2 aregivenas b, =0 for

j#k>2 and b; =1 for j>2. More specifically, the B matrix is given as follows:

b11

b, 0 - 0
» 0 - 0
B=lby b, 1 .- 0

N
=
o T

|bys by, 0 0 O

Hence, we need show condition (ii) holds only for the N elementsin the first two columnsof B,

(i.e.the b, elementswith k=1 or k=1), or equivalently, to solve the equations for the first two

columnsinthe P' matrix.
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To seethis, consider the equationsfor thefirst columninthe P' matrix, denoted as P'5 . The

value for each element in thisrow is given by the following matrix product:

Py Pu P - Pw by
P.lc _ pl:21 _Px Blc _ p:21 p:22 p?N y :21 '
P N1 Pn: Pnz 0 P by1

This produces the following system of N equations.

Pygbig + Piobyy + o+ Pyybyy = P = Py —én
Poilyg + Py + o+ PoyDyg = Pl o= Pay

Pnibiy + Prabor ++ PanPag = P e = P

Since the elements of the P and P' matrices are given, thisis asystem of N equationsin the b;,
unknowns, with k=1 and j=1,...,N . | develop an algorithm that can be applied to the N
elements b;,, j=1..,N, to show that condition App.ii) also holds for these elements as well.

Before proceeding with the algorithm, | rearrange the above system of equations to

provide a basis for the algorithm. Subtracting p,, from both sides of the "™ equation, the N

equations shown above can be rewritten as the following equations denoted [A.1] through [A.N].

[A-l]: - pu(l_ 11)+ Piobyy + -+ Piybyg ==&y
[A2]: — Por(L=byy )+ Poobyy + -+ Poybyy =0
(A3]-[AN -1)):

[A'N]: - le(l_ b11)+ Pn2lsy +--+ Pyybyy =0

To show condition App.ii) holds, | identify aseries of manipulationsto the system of equationsthat
adds or subtracts a fraction of one equation to a second equation while ensuring no sign change on

the coefficients of the b;, variables. Before we begin, insure the coefficients on each b, variable,
j=2,..,N are non-zero, and then start with the equations having a zero coefficient on the b,
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variable (we assumed only A.N meets this condition). The processis given in several steps below.

Step 1: Inthisstep, | add multiples of the different equationsto insure that the probabilitiesin each
column are positive above some specified row, and all the diagonal values equal 1. At the

end of thisstep, | will have created anew probability matrix, P* , with the following form:

1 P*, P*iz 0 P*i - Pry |
P* o 1 P*3 0 P¥p - P¥oy
P*s1 P¥a 1 0 p*s - P*a
P*=1p*n P* P 1 0 - p¥y
P*s 0 P*ss O 1 - 0
| P N1 0 P*ns O 0 1 |

Find the equation n that hasthe greatest number of p,; probabilities equal to zero and make

thisequation A.N. Starting with equation A.N-1, re-order the equations so that the ascending
equations al have zeroes only for the same | entries for which A.N has a zero probability.

For any equation that has a zero for a p,; probability that is non-zero in A.N, replace this
with anew equation having probabilities denoted as p* ; that are non-zero, but where the

p*,., probabilities are still maximal. For example, suppose equation A.2 has p,; =0.

Multiply A.N by e >0 and add thisto equation A.2 to give a new set of probabilities, but

choose e >0 sufficiently small to insurethat p*,, isstill maximal over al the new p*,;

probabilities. That such an e >0 exists can be seen as follows: identify all m such that

(Pum — Prs)>0. Thisset isnon-empty, since (pyy — Pys)>0. Next choose e >0 such that

(pzz - p2m)

(0 ) )>e;thisinsuresthat P*, = Py + Prs€ ISMaximal. For thefinal part of thisfirst
Nm — MN3
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step, for each equation A.n, 2<n< N, dividethisequationby p,, . Wenow have asystem of

equations similar to the following system.

[A'l]: - pll(l_bll)+ P12bay + 4 P1abpg + o+ Py =—ep

[A-Z]: — P o (=g )+ by 4o Py by e Py by, =0
([A3]-[An-1):

[A-n]: - plnl(l_bll)+ P'n2 Do+ by -+ Py by =0
([An+1]-[AN -2)):

[A-N _1]: = P (N1 (1-by)+0+ P'(n-1)3 D31 + P'(n-2)a Doy + -+ P (n-gn Pny =0
[AN]: — P @=by )+ 0+ p'ysby +0+---+Dby, =0

In particular, for n>1, the coefficient on the b,, variablesin equation A.nis 1, while the
coefficient on every other b, variableis positive but lessthan 1, except for the coefficients
on the b, variables where the coefficient is zero in equation A.N.

Step 2: Steps 2, 3 and 4 together will changethe P* matrix into and an identity matrix. | do thishy
zeroing out all the off-diagonal probabilities, starting with thosein thelast column. Starting
with equation A.N-1, determineif p*,_,y isthe smallest of the p*y_,); probabilities for

j>1.1f s0, zeroit out by multiplying A.N by p*_;y and subtracting theresulting equation
from A.N-1; then proceed to equation A.N-2 and repeat step 2 for that equation. Continueto
zero out probabilitieson by, inthismanner until al are zeroed out, in which case proceed to

Step 4, or until anon-minimal coefficient isfound, in which case, proceed to Step 3.

Step 3: Suppose the coefficient on by, is minima for each equation A.N-1 up to and including
A.n+1, but not on A.n. Find the smallest probability in equation A.n; supposeitis p*,, .
Thenmultiply A.N by p*,; and subtract theresulting equation from A.n. All the coefficients

remain positive, since we multiplied by the smallest probability in A.n, and the probability

on b, calit p**  remainsmaximal. Divide A.n through by thisnew probability p** .,
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so that the coefficient on b, isnow 1. Continue this process until the coefficient on by, is
minimal, and then repeat step 2 for A.n.

Step 4: Having zeroed out the coefficient on by, for each of the equations A.1 through A.N-1, next
turn to the coefficient on byy_,, for the equations A.N and A.N-2 through A.1. Using
equation A.N-1, perform Steps 2 and 3 in order to zero out these coefficients in the same

manner as was done for the coefficients on by;. Repeat these steps until all the off-diagonal

coefficients have been zeroed out on variables b, for j > 1. Note: the right-hand side of
equations A.2 through A.N isstill zeroto thispoint. Finally, zero out the probabilitiesin the
first column, those multiplied by (1-b,,), in equations A.2 through A.N by multiplying
equation A.1 by the coefficient on (1-b,, ) and subtracting from each equation A.2 through

A.N.

After completing Steps 1 through 4, we areleft with N equations having zero coefficientsfor
all off-diagonal elements. Theright-hand side of equations A.2 through A.N iseither positive or zero
depending on whether the coefficient on (1-by1) in the original equation was non-zero or zero. The
right-hand side of A.1isnegative, but soisthe coefficient on (1-by;), so that cross-multiplying and

solving for by proves that by, is also positive. As shown above, the sum of the on b, variables
equals 1, so al the b;, variables are between 0 and 1, completing the proof that condition App.ii)

holds. This completes the proof of Lemma 2.

Proof of Theorem 2: Using Lemma 2, we have that P' can be formed from P by

multiplication by a Markov matrix. Then, applying the sufficiency portion of Blackwell’s
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theorem, we have information structure y is statistically sufficient for »', so that for any
expected utility maximizing player, conditioning on » provides ahigher expected utility than
conditioningon »'. Hence y ispreferredto y' by thisplayer, as stated in the theorem. This

compl etes the proof of theorem 2.

Proof of Theorem 3: First, suppose language-form » =(, p,S,G,M,o,y) is hard.
Corollary 1.1 tells us that p(sk“" |gr?")=o if n=k and p(skM |grﬁ”)=1 if n=k. Since vn we have
In(p(s™ [gM ))=In(1)=0, H(s™ |G™)=0 followsimmediately. If H(s" |G" )=0, then wn, there
existsasingle k =k* suchthat p(s}! |g" )=1, whilefor k=k*, p(s} |g" )=0 holds. However,
the anchor set ensures, p(snM gV )>0,Whichimplies k* =n, implying that y ishard.

Next, let 7'=(Q, p,S,G,M,c",y) be asecond language form and suppose that y is
relatively harder than »'. From Lemma 2, we know that we can write the conditional probability
matricesas P x B=P', where B isaMarkov matrix and P and P' are conditional probability
matrices for the language form y and ', respectively. Without loss of generality, suppose P
and P' differ only on n=1, sothat vk, and for n>1 wehave p(s" [g" )=p(s' |g! ). This
means that to show 0< H(S" |G )< H(s™ |G™ ), it sufficesto show H(S™ [g} J<H(s™ g} )
holds. By definition, we have H(SM lg) )E H(PlR) and H(S'M |g) )E H(P'f), where P} and P'}
arethefirst row matricesin the matrices P and P', respectively. Also, from above we have that
P xB=P'}, where B isindependent of P*. | next use two properties of the entropy measure.
First, entropy is non-negative. Second, for two independent probability distributions A, and A, ,

H(A, x A,)=H(A,)+H(A,) (see Khinchin (1957), equation 2, page 5). Together these imply the
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following

H(P'F)=H(PR xB)=H (PR )+ H(B)> H(P).

Thisprovesthat y harder than z' implies 0< H(SM |GM)< H(S'M |GM).

Next, suppose 0<H(s" [GM )< H(s'™ |G" ) holds. By assumption, 7 and ' can be
compared based on hardness, so that, by Lemma 2, we know there exists a Markov matrix B
where either PxB=P' or P'xB =P . The second can be shown not to hold by contradiction.
Suppose P'xB =P holds. Thisimplies H(P)=H(P'xB)=H(P')+ H(B)>H(P'), whichin turn
implies H(s™ |G }> H(s™™ |G™ ), providing the contradiction. Hence Px B=P' holds,

implying y isharder than ', which completes the proof of Theorem 3.
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