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Representational Faithfulness in Accounting: A Model of Hard Information 

 
ABSTRACT: This study models representational faithfulness as “hard” information, or 
information that has a meaning upon which everyone agrees. In contrast to prior research, 
I show how "honest disagreements" may arise if we replace the assumption that 
individuals’ information partitions are common knowledge with the weaker assumption 
that the language they use is common knowledge. I start from the usual approach where a 
person's knowledge is modeled as a partition of the set of states of the world. I show that 
a language is "soft" if and only if it is not isomorphic to a partition of the set of states of 
the world. This indicates that the standard approach to modeling knowledge may 
represent an incomplete characterization, since, in a world with soft information, a 
complete description of knowledge requires the specification of the message set as well 
as the information partitions of the relevant individuals. I also show how the hard/soft 
criterion is different from comparing information partitions on their fineness and from the 
concept of common knowledge. Next, using the probability distribution defined over the 
set of states of the world, I construct a measure of relative hardness. I show that harder 
information systems are more informative in terms of Blackwell’s measure of relative 
informativeness. Also I show that relative hardness can be measured using the entropy of 
the underlying conditional probability distribution, providing a link between relative 
informativeness and the entropy measure. 
 
Key words: Reliability, hard information, common knowledge, and entropy. 
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1. Representational Faithfulness in Accounting: Introduction 

Consider the situation of an auditor who acts as an expert witness. The outcome of a 

court case often pivots on the testimony of an expert, so both sides to a dispute often bring their 

own experts. These experts auditors are sworn to tell the truth and are provided the same data; 

yet they often disagree. On the one hand, theoretically speaking, such "honest disagreements" 

seem surprising. While it may be possible that these experts disagree because they communicate 

strategically, economic theory has shown that the notion of an "honest disagreement" between 

experts is impossible.2 On the other hand, practically speaking, such disagreements are expected 

and occasion no surprise when they occur. Further, the accounting profession has long 

recognized the possibility of honest disagreements. The conceptual framework in accounting 

recognizes that disagreement may exist about what financial information “purports to mean.” 

According to Statement of Financial Accounting Concepts (SFAC) #2 on the Qualitative 

Characteristics of Accounting Information, the requirement that accounting information should 

represent what it purports to represent is referred to as “representational faithfulness.” The 

objective of this paper is to develop a formal model of representational faithfulness. 

The notion that perfectly observed information can have different meaning for different 

people has been defined in accounting theory as "soft" information. I use the term “hard” 

information to denote information that has the same meaning for all people, so that it possesses 

representational faithfulness, and the term “soft” information to denote information that is not 

hard. I show that the approach usually adopted in economic theory for expressing how economic 

players know things presupposes that all economic information is perfectly hard. In this manner, 

I show that honest disagreements do not arise when information is hard, but that they may arise 

                                                 
2 Strategic communication refers to possibly dishonest communication between individuals with 
conflicting objectives. The objective of this paper is to investigate the possibility of honest disagreements, 
so non-strategic communication is assumed. This objective is not trivial. For example, Aumann (1976) 
shows that if an event is common knowledge to experts with identical priors, then “agreeing to disagree” 
is impossible. The objective here is to see when, if ever, agreeing to disagree may indeed be possible. 
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when information is soft. I argue that the reason prior research finds that honest disagreements 

are impossible is that this research assumes that what each individual can know is common 

knowledge.3 If we assume instead that the language individuals use, and not each individual’s 

potential knowledge of the world, is common knowledge, then honest disagreements are 

possible. Further, I show that allowing information to lack representational faithfulness requires 

that the language used by decision-makers provide decision-useful information separate from the 

underlying facts that are being communicated. It is almost as if how we say something is as 

important as what we say. Also, I provide examples that demonstrate how both the notion of 

common knowledge and the fineness criterion used in past literature to compare information 

systems are distinct from the criterion developed to assess the hardness of an information system. 

Last, I extend the model to develop a measure of relative hardness. I show how relative hardness 

is related to Blackwell’s notion of decision-useful information and to the concept of entropy well 

established in information theory.4  

 

2. Background and Prior Literature 

The objective of this paper is to formally model and analyze the characteristic of 

representational faithfulness. Building this model led me to connect this research to other 

fundamental game theory research that effectively broadened the initial objective considerably. 

To appropriately convey where this paper fits in the literature, it is necessary to clarify the 

narrowness of the original research objective, in particular, to show what the original work did 

not do, and then to show how the initial work led to a broader research agenda. 

                                                 
3 Sunder (2002) discusses the pivotal role that the common-knowledge assumption plays in accounting 
research. 

4 Anctil, Dickhaut, Kanodia and Shapiro (2003) develop and test experimental a model of information 
transparency and coordination and what I refer to as Blackwell's notion of relative informativeness they 
refer to as the "Blackwell fineness" criterion. Their measure of transparency is close to my measure of 
hardness, but they do not explicitly identify or distinguish the set of purported meanings of reports. 
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In SFAC #2, FASB argued that “better” accounting information is that information which 

readers of accounting information find more useful in making their decisions. In assessing the 

decision-usefulness of accounting information, FASB identified two primary aspects of 

accounting information: its relevance and its reliability. I ignore relevance in this paper and 

focus instead on analyzing reliability. 

SFAC #2 decomposes reliability into two components, representational faithfulness and 

verifiability, and states that a third component, neutrality, interacts with these two. FASB refers 

to the characterization that a reliable measure will represent “what it purports to represent” 

(par.59) as “representational faithfulness.” SFAC #2 goes onto describe representational 

faithfulness as “the correspondence or agreement between a measure or description and the 

phenomenon it purports to represent” (par. 63). FASB describes verifiability as “the ability 

through consensus of measures to ensure that information represents what it purports to 

represent, … without bias or error” (glossary). While the conceptual framework describes 

intentional bias as a factor in the verifiability and neutrality of a measure, and pertains to 

representational quality, FASB distinguish representational quality from representational 

faithfulness. I also ignore representational quality and bias and focus only on analyzing the 

representational faithfulness of accounting information. 

I purposely ignore reporting bias. People will likely communicate strategically, and prior 

literature has demonstrated that the strategic nature of the communication will significantly alter 

the game (see for example, Crawford and Sobel, 1982, Gigler, 1984 and Fischer and Stocken 

2001). While my analysis can be extended to a strategic setting, intentional bias in reporting is 

not a factor in representational faithfulness. While analyzing reporting bias is extremely 

important, I believe that we need to model representational faithfulness separate from reporting 

bias if we are to understand how these aspects of information differ. I justify the narrowness of 

my definition of hard information because the focus of my research is not on representational 

quality (par 59) or on intentional bias in reporting, but on representational faithfulness. To 
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address this research objective, I assume throughout this study that the decision-makers 

(abbreviated as DMs) communicate non-strategically.  

Accounting research has directed attention at the notion of hard information since at least 

the early seventies when Ijiri (1975) emphasized this notion in arguing that accountability was a 

primary purpose of accounting measurement.5 For Ijiri "the lack of room for disputes over a 

measure may be expressed as the hardness of a measure” (p. 36). He offers cash balances as an 

example of a hard measure and goodwill as an example of a soft measure. Gjesdal (1981) defines 

a soft information-reporting system as one in which the underlying information is unverifiable 

while the report is jointly observed and contractible. Penno (1990), Penno and Watts (1991) and 

Arya, Fellingham and Glover (1995) have also addressed hardness of accounting information, 

where the unverifiability of the information drives the definition of softness. These papers do not 

all use the term "hard information" in the same way. However, all of these papers are capturing 

some aspect of the notion, stated by Ijiri, that a hard measure "is one constructed in such a way 

that it is difficult for people to disagree" (p. 36).  

My approach differs from those discussed above in that they all focus on the fact that soft 

information is susceptible to manipulation; my approach focuses on the fact that soft information 

may be interpreted differently by different people without relying on differences in motivation. 

As I discussed earlier, this is consistent with the research objective of modeling representational 

faithfulness, as opposed to modeling bias or representational quality. My approach also indicates 

that verifiability may be a more complicated notion than it at first appears. For example, my 

modeling of representational faithfulness shows that we may need to distinguish verifying facts 

by observing them from verifying what individuals know concerning these facts.  

This issue with the meaning of “verifiability” relates directly to the work on common 

knowledge, especially Aumann (1976). An event is called common knowledge to two players if 

                                                 
     5 Ijiri (1975), page ix. Hong and Page (2001) present a related model of incomplete perspectives 
outside accounting, applying it to problem solving by teams of agents. 
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player one knows it, player two knows player one knows it, player one knows player two knows 

player one knows it, etc. Aumann (1976) showed that if two experts have a prior probability on 

some event occurring, and these probabilities are common knowledge, then they must be equal. 

My research objective is to consider how individuals interpret soft information. I show that 

experts may disagree about such information, which seems clearly to contradict Aumann’s 

result. However, as Aumann points out, his result assumes that the information that each player 

can know (i.e., their information partitions) is common knowledge. I argue below that this 

assumption implicitly requires that information is hard, and therefore we need to relax it to allow 

for the possibility that information may lack representational faithfulness. This is where my 

initial narrow research topic broadened; this broadening requires elaboration. 

Aumann (1976) defined common knowledge using an assumption commonly called the 

Common Prior Assumption, or CPA. 6  Loosely stated, the CPA says that differences in 

probability arise solely from differences in information; people who have the same information 

will assess any event as having the same probability of occurring. Aumann builds both his result 

in Aumann 1976 and the result (see Aumann 1987) that every Bayesian rational equilibrium is 

equivalent to a correlated equilibrium, upon the CPA. Challenging the CPA is not done lightly, 

nor was it the original objective of this research. However it appears unavoidable, so let’s 

discuss the CPA in more detail.  

As Aumann points (page 7, Aumann 1987) the CPA does not imply all players have the 

same subjective probability, but that all subjective probabilities differ only due to differences in 

information. He goes onto argue (ibid, pages 13-15) that the CPA is used because, unlike 

preferences, subjective probabilities are not individual, and also because the CPA enable 

researchers to “zero in on purely informational issues” in our models. Earlier (ibid page 9), 

                                                 
     6 Harsanyi (1968) showed that a game of incomplete information is equivalent to a game of imperfect 
information with nature making the initial move if and only if the CPA holds; hence this led Aumann to 
call the CPA the “Harsanyi doctrine” (see page 7 in Aumann 1987). 
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Aumann argues that his assumption that the information partitions of the individual players is 

common knowledge is in fact a theorem or tautology, and not an assumption. Further, he argues 

that this is part of the model and that the “situation with priors is similar”. Aumann (1998) 

expands upon these arguments in defense of the CPA in response to Gul (1998), which argued 

that the CPA was an assumption, not a result, and that it could be relaxed. Morris (1995) 

provides perhaps the most thorough and eloquent discussion of the arguments for and against 

relaxing the CPA. He identifies 3 broad arguments for the CPA but concludes that the arguments 

either fail outright or hold limited sway, so that relaxing the CPA should produce useful 

research. Recent research (e.g., Morris, 1994 and Morris and Shin, 2002 and 2005, and Halpern 

2000) relaxes the CPA to good effect.7 I do not argue why relaxing the CPA is valid; instead, I 

argue below that relaxing the CPA is necessary for us to consider situations that lack 

representational faithfulness. In effect, assuming the CPA holds implies we assume 

representational faithfulness holds.    

The research in this paper is also related to a line of behavioral accounting research that 

addresses the form managers use to present their information. This line of research has shown 

that the form of the information being communicated may affect how users of the information 

interpret it. The different types of communication that have been studied are quite varied, and 

include the form taken by earnings forecast (Hirst, Koonce and Miller, 1999), environmental 

disclosures (Kennedy, Mitchell and Sefcik, 1998) and comprehensive income disclosures (Hirst 

and Hopkins, 1998), among others. My finding that soft information involves a language that 

itself affects how DMs interpret the information is consistent with this research. Hence, the 

modeling of hard information in this paper complements this research, and in so doing, offers a 

                                                 
1 Halpern (2000) investigates two characterizations of the CPA, including one based on a logical 
language, and shows they differ over infinite spaces. Morris (1994) investigates how “no trade” theorems 
under heterogeneous beliefs, Morris and Shin (2002) look at the social value of public information under 
heterogeneous beliefs, and Morris and Shin (2005) construct a set of “interaction games” that generalize 
different types of heterogeneity.   
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way to connect this behavioral research to an analytical framework. 

Other related research also stretches the range of possible decision-making criteria. In a 

closely related study, Stecher (2005) constructs an economy with subjective informational 

assumption and shows that the welfare theorems will not hold in this economy. Gilboa and 

Schmeidler (1995) offer a decision theory that is “Case Based,” where the decision-maker uses a 

similarity function to organize his decisions prior to taking his actions. Hong and Page (2001) 

show that behavioral diversity can arise due to the type of game ensemble a player has 

historically played. The current paper brings the language that DMs use into the framework for 

describing how DMs know and how they communicate their knowledge, so complements these 

other studies as well. 

 

3. Research Methodology and the Basic Model 

3.1 An Example of the Hard/Soft Information Distinction 

To convey what is meant by hard or soft information, consider an example of valuing a 

piece of equipment for financial statement purposes using historical cost or fair value 

accounting. For the purposes of this example, assume that fair value accounting requires the 

manager to identify a comparable asset and then report the fair market value of this comparable 

asset. Suppose a manager purchases the equipment for a cost $10 and estimates that the 

equipment has a life of two years and no salvage value. At the end of year one, the manager 

would report a historical cost for this asset of $5 under straight line depreciation, and any auditor 

would agree with this valuation. Next, suppose the manager reports $5 under fair value 

accounting as well. Because this is based on identifying a “comparable” asset, there is ambiguity 

in the report, even though the actual amount is the same as it is under historical cost. An auditor 

auditing the fair value amount would need to acquire estimates of the “comparable” asset, and 

then assess whether the $5 was a reasonable valuation for the equivalent asset. In fact, had the 

manager reported $6 or $4, it is often the case that the auditor would still have agreed with the 
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valuation precisely because there is ambiguity in the application of the term “comparable.” 

This example highlights two points. First, a soft measure does not depend on the presence 

of incentives. The presence of a disagreement in the preceding example does not necessarily 

imply that reports are being purposely distorted as a result of differing incentives; the DMs may 

honestly disagree. Nor does verifying the process necessarily resolve the disagreement. 

Verification may clarify that a disagreement exists, but resolving the disagreement requires that 

the DMs agree on what is meant by a comparable asset. This leads to the second point. 

This study focuses not on what a DM observes, but on how he communicates what he 

observes and how this communication is interpreted. The example illustrates that the hardness of 

information is intimately related to the language or message space involved. Changing the set of 

messages or changing the manner in which the DMs associate their knowledge with the 

messages can affect whether the information is hard or not.  

At first glance, one might think that fair value accounting merely adds noise to the report, 

but I believe the difference between historical cost and fair value accounting in the example is 

subtler. The difference actually relates to how the inference process of the auditor, or any 

financial statement reader, differs from that of the manager, or financial statement preparer. To 

see this, I first introduce the formal notation and the basic model. Then I reconsider the example 

of asset valuation to clarify the subtlety that I think actually exists. 

 

3.2 Basic Model: 

Let ( )p,Ω  be a finite probability space and let S  and G  be partitions over the states of 

the world Ω  presenting the information partitions of the manager and the auditor, respectively.  

For each state, Ω∈ω , let ( )ωs  and ( )ωg  denote the element of S  and G , respectively, that 

contains ω . Suppose that these two players communicate using a language or message set 

denoted as M , where the manager can issue message Mmn ∈ . I assume that the message set has 

cardinality N , denoted as NM = , so that { } NnnmM ≤≤= 1U . To issue the message, the manager 
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uses his knowledge of the current state of the world. We can describe the process of issuing a 

report as a mapping from the manager’s information partition into the set of possible messages, 

while a similar mapping exists for the auditor. Denote these mappings as MS →:σ  and 

MG →:γ , and call them the signaling functions of the manager and auditor, respectively, so 

that, if the current state of the world is Ω∈ω , then the manager reports ( )( ) nms =ϖσ . Using the 

notation introduced above, define ( )γσχ ,,,,,, MGSpΩ=  as the “language-form” that represents 

the accounting method being employed. To model representational faithfulness, I need to specify 

what each message “purports to be.” I do this by introducing the notion of an “anchor” set. 

 

A1 (Assumption of an Anchor Set): For each language form ( )γσχ ,,,,,, MGSpΩ= , 

assume there exists a set, Ω⊂MX , with { } Nn
M
n

M xX ≤≤= 1U  and where for each element, M
nx , the 

following holds: ( )( ) ( )( )M
nn

M
n xgmxs γσ ==  

 

I call M
nx  the anchor of message nm , or alternatively, I say that message nm  is anchored at M

nx . 

The cardinality of the anchor set equals the cardinality of the message set, so that each message 

is anchored at one, and only one, anchor.  

The anchor set specifies a set of states of the world about which the manager and auditor 

can agree when using message set M . The introduction of anchors accomplishes two tasks. 

First, it ensures that the two players can communicate at some basic level. For example, when 

one player says “black” the second player knows that he does not mean “white.” Second, in 

order to formally model representational faithfulness, I need to specify a set of states of the 

world that describe the phenomenon that the messages “purport to represent.” The anchor set 

fills this role. 

As stated earlier, I assume that the DMs communicate non-strategically. Specifically, I 

assume both players can communicate, that is, can write and read the language, and do it 

honestly. The following assumptions on the signaling functions ensure that this is the case.  
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A2 (Signaling Functions Assumptions): For any language form, ( )γσχ ,,,,,, MGSpΩ=  

assume the following holds for the signaling function of the manager, MS →:σ : 

i) MS →:σ  is surjective or onto, or ( ) nn msSsMm =∋∈∃∈∀ σ, . 

ii) MS →:σ  is honest, or Ω∈∀ϖ , ( )( ) nn msm =⇒∈ ωσϖ .  

Analogous conditions hold for the signaling function, MG →:γ , of the auditor. 

 

Assuming the information partitions of each DM form the domain of their signaling function 

ensures that they can write in the message set. Condition i), the assumption that the functions are 

surjective, ensures the DMs can read in this message set while condition ii) ensures that they will 

not purposely report dishonestly. I use assumptions A1 on the anchor set and A2 on the signaling 

functions to specify what is meant by a representationally faithful accounting method. I simplify 

the subsequent analysis by referring to a representationally faithful message as “hard,” and a 

message that lacks representational faithfulness as a “soft” message. 

 

3.3 Definition of the Hard/Soft Information Distinction: 

To motivate the hard information definition, reconsider the example comparing two 

accounting methods for reporting asset value, historical cost and fair value accounting. We use 

language forms, ( )HHHH MGSp γσχ ,,,,,,Ω=  and ( )FFFF MGSp γσχ ,,,,,,Ω= , to represent 

these methods, where the subscripts denote accounting under the historical cost and fair value 

methods, respectively. This means that +ℜ⊆∈ HnH Mm ,  and +ℜ⊆∈ FnF Mm ,  denote the report 

or message issued by the manager under historical cost and fair value accounting, respectively. 

Denote the message mappings of the manager and auditor under historical cost accounting as 

HH MS →:σ  and HH MG →:γ , respectively. Analogous mappings exist that describe how 

reports are issued under fair value accounting.  

What prevents disagreements when the manager reports under historical cost, and what 
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makes historical cost “hard,” is that, in every state of the world, the auditor always reports the 

same message as the manager. More formally, suppose the manager “knows” the element of his 

partition that contains the state of the world, ( )ωs  and reports ( )( ) HnHH Mms ∈= ,ωσ . Seeing the 

historical cost report nHm , , the auditor uses the inverse of her message mapping, GM HH →− :1γ , 

to infer the element of her information partition that contains the current state of the world. 

Under a hard reporting system such as historical cost is assumed to be, the auditor will infer the 

element ( )ωg , that is, we will have ( ) ( )nHH mg ,
1−∈γω . Under fair value accounting this may not be 

true, that is, the auditor may infer that a different element of her information partition describes 

the current state of the world. Formally, this means that ( ) ( )nFF mg ,
1−∉γω  may hold. This intuitive 

notion of hard information leads to the following formal definition. 

 

Definition of Hardness: A language form ( )γσχ ,,,,,, MGSpΩ=  is hard if for all 

messages Mmn ∈  and for all states Ω∈ω  we have ( )( ) ( )( )ωγωσ gmsm nn =↔= . 

 

As noted earlier, I rule out the possibility of strategic message choice via assumptions A1 and 

A2. This means that, by assumption, hardness is not a choice variable, but an exogenous 

characteristic of the language form. I will sometimes say a message set is hard, with the 

understanding that this means the language form is hard. 

 My definition of hard information coincides with the requirements for information to be 

hard laid out by Ijiri (1975). Ijiri describes hard measurement as the “processing of verifiable 

facts by justifiable rules in a rigid system which allows only a unique set of rules for a given 

situation” (page 36). The rules are the signaling functions, which are unique for each DM. The 

fact is the state of the world that is observed by the DMs. My definition ensures that, under a 

hard language form, these facts can be communicated so that each DM “knows” the fact in the 

same way. However, under a soft language form, as I define it, the facts will not be “verifiable” 

in the usually sense of this word.  
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Within the context of my model, a DM can verify a “fact” or event by observing it. 

Further, one DM can verify that a second DM “knows” this event by observing that the second 

DM observed the event. However, one DM may not be able to verify that the second DM 

“knows” the event in the same way as the first DM “knows” it. The DMs know the state of the 

world through the filter of their own information partition, but understanding what the other DM 

“knows” requires that this information be communicated and that the message be interpreted. 

With soft information, DMs interpret this information differently. Different interpretations are 

possible because we no longer assume the DMs’ information partitions are common knowledge. 

I return to this point when I relate hard information to the notion of common knowledge in 

Section 4.1 below. 

While I define hardness in terms of the signaling functions, we can also speak about the 

inverse mappings, that is the mappings that take the reports into the information partitions. 

Denote these inverse mappings as SM →− :1σ  and GM →− :1γ  for the manager and auditor 

respectively. I now introduce another definition that proves useful in subsequent analysis. 

 

Definition of Inverse Message Sets: For language-form ( )γσχ ,,,,,, MGSpΩ= , define 

the inverse message sets for the manager and auditor as { }{ }Nn
M
n

M sS ≤≤= 1  and { }{ }Nn
M
n

M gG ≤≤= 1 , 

respectively, where ( ){ }n
M
n mss 1−∈= σ  and ( ){ }n

M
n mgg 1−∈= γ . 

 

This definition introduces message-equivalent signal spaces, which are the set of signals 

which can be communicated between DMs using a given message space. In this model, one 

DM's knowledge is knowable by another DM if and only if it can be communicated. Hence, 

these information partitions are the relevant ones for understanding the information that one DM 

knows that can be communicated using the given language. The importance of these sets is 

discussed in more detail below, especially in connection with Corollary 1, where I show that 

message-equivalent information partitions are identical if and only if the message space is hard.   
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4. Results 

The results are presented in two sections. In section 4.1, I start by presenting the basic 

representation result concerning hard message sets, and show how soft messages allow for 

disagreement. In section 4.2, I present definitions of relative hardness, and extend the analysis to 

show how the different measures of relative hardness can be used  

 

4.1. Basic Results on Hardness 

The first question that we wish to answer is whether the hardness of information is 

related to the message set used. In answering this question, direct message sets are important. A 

direct message set is defined as Ω=M . I will write Ω≤M  to indicate that the set of states of the 

world is a refinement of the message set. The intuition is that hardness and directness are 

equivalent characteristics, and this intuition is formalized in the following theorem.  

 

Theorem 1: A language-form ( )γσχ ,,,,,, MGSpΩ=  is hard if and only if there exists a 

second language form, ( )',',',,,, γσχ MGSpΩ= , where Ω≤'M  and 'M  is isomorphic to M , so 

that ( ) ( )nn mm '' 11 −− =σσ  and ( ) ( )nn mm '' 11 −− = γγ  for each Nn ,...1=  (See Appendix for all proofs.) 

 

Theorem 1 states that an accounting method generates hard information if and only if the 

language is a direct representation of the states of the world. It is obvious that this condition 

suffices to ensure hardness, since we assume truth-telling by the DMs. The necessity of this 

condition is perhaps more surprising. It seems to be in the nature of virtually every language to 

include some messages that cannot be defined solely in terms of states of the world. For 

example, consider the formal definition of assets as “future benefits” While the term future 

benefits can be associated with certain states of the world, it seems impossible to construct an 

exhaustive list of states such that a future benefit exists if and only if one of these states occurs. 
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Theorem 1 tells that unless such a list can be constructed, the term future benefits lacks 

representational faithfulness.  

Alternatively, Theorem 1 says that a necessary and sufficient condition for information to 

be soft is that the language form involves communicating using ambiguous messages in the 

sense that they have no specific meaning or definition in terms of the states of the world, but are 

nonetheless decision-relevant.8 In fact, it is their ambiguity that enables these messages to 

convey meaning outside of the “knowledge” represented by the set of states of the world. Once 

we assume that the message set is a coarsening of the direct message set, the possibility that an 

intelligent and honest player may use his judgement in reporting a signal about the state of the 

world can be ruled out; he merely repeats the state itself. However, if in our language there is a 

word that is not definable in terms of specific states of the world and if this word is relevant to 

some decision, then that decision involves soft information. 

Theorem 1 also highlights a relationship among the information partitions and the 

message space, which is formalized in the following corollary. 

 

 Corollary 1: A message space is hard with respect to two information structures if and 

only if the message-equivalent information partitions are equivalent.  

 

Corollary 1 redefines hardness, so that it merely restates Theorem 1, but in so doing, it 

highlights how hardness relates to information partitions S  and G . First, Corollary 1 tells us that 

only the message-equivalent sets MS  and MG  matter for determining hardness, not S  and G . 
                                                 
     8 Similar to “future benefits,” the term “fair market value of a comparable asset” in the example of 
valuing an asset is an ambiguous yet decision-relevant message if we cannot completely define this term 
via a list of states of the world. For some assets, such a definition may be possible. For example, the fair 
value of a used car can be found from its “blue book” value. However, in this case the phrase “fair value 
of a comparable asset” would be replaced by the phrase “the blue book value of a used car of the same 
make, model, and year.” Using an analogous argument, the “fair value of a common share of IBM stock” 
may be considered hard information, if it is understood to mean the quote on the NYSE, or it could be 
considered soft information if this value is based on a subjective assessment by management. 



 17

Informally speaking, we do not care what the DMs know, only what they can communicate. 

Second, it is clear that MM GSM =='  is a (weak) coarsening of both S  and G . Corollary 1 tells 

us that the opportunity to communicate knowledge as hard information is restricted to 

information that can be represented by an information partition that is a common coarsening of 

the information partitions of the DMs involved. Hence, the DMS may have information 

partitions that preclude the existence of any non-trivial accounting method that has 

representational faithfulness. 

Two additional points follow almost immediately from Theorem 1 and Corollary 1. 

These points concern how the hard-soft distinction relates to the fineness criterion and to the 

notion of common knowledge of events. I discuss each of these in turn. 

First based on a casual notion of hardness, one might think initially that hardness is 

equivalent to the notion of fineness: Corollary 1 shows otherwise. Simple examples demonstrate 

that having comparable information partitions, that is, being able to rank the original information 

partitions based on fineness, is neither a necessary nor a sufficient condition for the message set 

to be hard. First, if the message set is a singleton, so that the same message is always reported, 

then it is clearly hard. This holds even if partitions S  and G  are not comparable. Next, suppose 

{ }21 mmM ,=  and let { }321 sssS ,,=  be a refinement of { }21 ggG ,=  where 11 gs = . and 

232 gss =∪  and suppose that 3s∈ω  is the state of the world. Then it is clearly possible that 

( ) ( )ωγϖσ =≠= 21 mm , so that comparability of the information partitions does not imply 

hardness. The independence of the hard/soft distinction from the fineness is particularly 

interesting, as fineness of an information partition is often associated with the informativeness of 

a signal, in Blackwell’s sense. I return to this point when I derive relative measures of hardness 

in the next section.  

The second point following from Theorem 1 and Corollary 1 is that hardness is also 

independent of the notion of common knowledge. To see this, consider a situation, due to 

Aumann (1976), where disagreement is impossible. Let ( )p,Ω  be a finite probability space and 
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let S  and G  be partitions over the states of the world Ω  presenting the information of two 

players. Let R  be the meet or finest common coarsening of these two partitions, written in 

standard notation as GSR ∧= . For each state of the world, Ω∈ω , let ( )ωs  denote the element 

of S  that contains ω , and let ( )ωg  and ( )ωr  denote similar relations for those partitions. 

Aumann proposed the following definition for common knowledge. Call an event, Ω⊂A  

common knowledge for the two players at Ω∈ω  if ( ) Ar ⊂ω  holds. Aumann then used this 

definition to prove that two experts cannot “agree to disagree.” Formally, his result is given as 

follows: 

 

Proposition (see Theorem 1 in Milgrom 1981): Suppose that for some event Ω⊂A  and 

state Ω∈ω , it is common knowledge at Ω∈ω  that ( ) α=SAp |  and ( ) β=GAp | . Then βα = . 

 

This result says that if two experts have a prior probability on some event occurring, and these 

probabilities are common knowledge, then they must be equal. Theorem 1 seems clearly at odds 

with this result. We can trace the source of this conflict to what we assume to be common 

knowledge under each approach. 

The approach in this paper conflicts with Aumann’s approach because I separate what the 

players know from what they can communicate. Aumann assumes that the information partitions 

of the two experts are themselves common knowledge. He acknowledges this fact, saying that 

“worthy of note is the implicit assumption that the information partitions… are themselves 

common knowledge” (see page 1237). He claims that the assumption can be made without loss 

of generality since “included in the full description of the state Ω∈ω  of the world is the manner 

in which information is imparted to the two players” (page 1237). In making this assumption, 

Aumann implicitly assumes the players communicate using a hard language. 

I relax the assumption that the information partitions are common knowledge and replace 

it with the weaker assumption that the language is common knowledge. Each individual can 
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know an event, but the first DM cannot know what the second DM knows, only what the second 

DM says she knows. By shifting the focus from the common knowledge of an event to the 

common knowledge of the report of an event, I shift the focus from the players’ information 

partition to their inverse image sets. As Corollary 1 shows, the two DMs always agree about the 

report of events if and only if the inverse image sets are identical, that is, if and only if the 

message set is hard. Further, an event may be common knowledge for two players, yet they may 

disagree in their reporting of this event. Hence, the notion of whether or not the event is common 

knowledge is distinct from whether or not the report of this event is hard or soft. While the 

concept of common knowledge remains important, it seems that the latter criterion is the relevant 

one when investigating whether or not experts will agree on reported information.  

The attractiveness of using information structures to describe the distinction between 

hard and soft information is its generality. However, this approach does not quantify hardness. In 

the next section, I address the latter difficulty at the cost of some generality. 

 

4.2. Measures of Relative Hardness 

This section provides a measure relative hardness. In my definition of relative hardness, I 

use the probability distribution defined over the inverse image sets of the DMs. Defining 

hardness based solely on the underlying probability distribution allows a quantification of 

hardness. Prior to this point in the analysis, hardness has been defined only in terms of sets and 

functions and only in absolute terms. Showing an equivalent definition in terms of probabilities 

may convey more intuition about hardness, and it relates the hardness concept to a large body of 

literature. Further quantifying hardness allows us to speak of relatively harder or softer message 

sets, increasing the potential usefulness of the concept. 

Use the conditional probabilities defined on the inverse messages sets of the two DMs, 

(i.e., ( )M
n

M
k gsp | , where ( )k

M
k ms 1−=σ  and ( )n

M
n mg 1−= γ ) to define relative hardness as follows.  
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Definition of Relative Hardness: Consider two language-forms, ( )γσχ ,,,,,, MGSpΩ=  

and ( )γσχ ,',,,',,' MGSpΩ=  with the same anchor set, so that n∀ , both ns  and ns'  are anchored 

at M
nx . Define χ  as harder than 'χ  if, for the elements of the inverse image sets, MM

n Gg ∈ , M
ns  

and MM
k Ss ∈  and M

ns'  and MM
k Ss '' ∈ , the following hold: 

a. ( ) ( ) ( )M
n

M
k

M
n

M
n

M
n

M
n gspgspgsp |'|'| ≥≥ , and  

b. ( ) ( )M
n

M
k

M
n

M
k gspgsp |'| ≤ , with at least one inequality strict. 

 

In general, the definition of relative hardness introduced above does not completely order a set of 

standards. We shall call two language forms compatible if they can be ranked using the above 

definition of relative hardness.  

 One can understand the intuition behind the definition most easily by recognizing that the 

definition of relative hardness is analogous to the notion of mean-preserving spreads. One 

distribution is a mean-preserving spread of a second distribution if the first distribution spreads 

the probability from realizations closer to the mean to realizations farther from the mean, while 

keeping the mean the same. In the above definition, the language forms differ only by the 

signaling function of the first DM. Instead of spreading the probability around the mean, softer 

information systems spread the probability of each conditional distribution of the first DM’s 

signals around the second DM’s signal.  

 Reconsider the example of valuing an asset used in Section 3 to motivate the definition of 

absolute hardness. Suppose for simplicity that the asset’s value is either low or high, denoted as 

1m  or 2m , respectively. When message nm  is reported, the manager and auditor infer the inverse 

image message denoted as M
nYs ,  and M

nYg , , respectively, under accounting method { }FHY ,= , 

where as before H  represents historical cost and F  represents fair value accounting. If, as 

earlier assumed, historical cost accounting is perfectly hard, this means 

( ) ( )M
H

M
H

M
H

M
H gspgsp 2211 1 ,,,, || == , while ( ) ( )M

H
M
H

M
H

M
H gspgsp 2112 0 ,,,, || == . Suppose that fair value 
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accounting is soft, so that under fair value accounting, the inferences of the manager and auditor 

agree 80% of the time for a low valuation and 75% of the time for a high valuation. This means 

that when the auditor infers a low valuation, we have ( ) 811 .| ,, =M
F

M
F gsp  and ( )M

F
M
F gsp 122 ,, |. = , while 

when she infers a high valuation, we have ( )M
F

M
F gsp 2125 ,, |. =  and ( ) 7522 .| ,, =M

F
M
F gsp . 

In general, a softer language form reduces the probability of a same message outcome, 

( )M
n

M
n gsp | , and raises the probability of a different message outcome. Hence, the perfectly hard 

message set has ( ) 1=M
n

M
n gsp |  for nk =  and ( ) 0=M

n
M
k gsp |  for Nnnk ,...,,,..., 111 +−= . As 

discussed below, it seems natural to define a message set of maximal softness as one that has 

( )
N

gsp M
n

M
k

1
=|  for all Nn ,...,1=  and Nk ,...,1= .  

I begin the analysis of the results of this section by showing that a harder language form 

is more informative in Blackwell’s sense. This is done in the following theorem. 

 

Theorem 2: Suppose χ  is relatively harder than 'χ  as given in the definition above. 

Then utility maximizing DMs prefer the relatively harder language form χ  to 'χ . 

 

 Theorem 2 says that a harder message space produces signals that can be used by a DM 

to increase his expected utility. The intuition follows again by recalling the analogy of relative 

hardness to the notion of mean-preserving spreads. Just as mean-preserving spreads lower 

expected utility, so do softer message sets. 

 A valuable aspect of Theorem 2 is that it says a harder message set produces signals that 

are more informative, in the Blackwell sense, even though the information partitions of the two 

DM’s may not be comparable.9 Blackwell defined one signal as being more informative than a 
                                                 
9 Blackwell (1951) provided necessary and sufficient conditions under which ranking message sets by 
their informativenes is equivalent to ranking them by fineness. More specifically, Blackwell considered 
the case where there were two signals, Ss∈  and Gg∈ , and a decision-relevant variable Xx∈ , and a 
probability distribution p  defined over these variables. He assumed that the signals were noiseless, so 
that ( ) 1=xgp |  or ( ) 0=xgp |  and ( ) 1=xsp |  or ( ) 0=xsp |  held for all realizations of the variables. 
Blackwell showed that S  was relatively more informative than G  if and only if S  was a refinement of 
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second signal if the first signal enables the DM to obtain a higher expected utility. Theorem 2 

may seem surprising, since Blackwell’s famous result is often interpreted to mean that 

information systems can be ranked based on their informativeness only if the signals are 

comparable.10 Theorem 2 demonstrates that this is not so if signals are noisy. Informally, a noisy 

signal is one that provides imperfect information about a decision-relevant variable (see note 7 

for a formal definition of noiseless signals). For example, in the earlier discussion of valuing an 

asset, the decision-relevant information might be the cash flow that the asset will generate. The 

historical cost of the asset would be considered a noiseless signal if only one historical cost 

amount is possible for each actual cash flow realization. 

In general, we expect most signals in accounting to be noisy signals, and not to provide 

perfect information. Theorem 2 states that compatible information systems, that is, those that can 

be ranked by relative hardness, can be ranked in terms of their informativeness even though they 

may include noisy signals. Hence it offers a way to partially order information partitions and 

message sets that is qualitatively different than the fineness criteria. 

The second approach to measuring hardness uses the concept of entropy.11 For any 

arbitrary probability distribution, ( )nyp , with finite support Yyn ∈  for Nn ,...,1= , denote the 

entropy of this distribution as ( )( )nypH , where the entropy is given by the following formula  

( )( ) ( ) ( )( )( ) 0
1

≥⋅−= ∑
=

N

n
nnn ypypypH ln .  

For this second measure of relative hardness, I again use the conditional probabilities defined on 

the inverse message sets of the two DMs. Using these probabilities, let 

( ) ( )( ) ( ) ( )( )( )∑
=

⋅−=≡
N

k

M
n

M
k

M
n

M
k

M
n

M
k

M
n

M gspgspgspHgSH
1

|ln|||  

                                                                                                                                                             
G . Marschak and Miyasawa (1968), McGuire (1972), Green and Stokey (1977) and Malueg (1985) 
clarify that assuming noiseless signals is an indispensable condition for refinement to be a necessary 
condition for relative informativeness. In my model, I relax the assumption that the signals are noiseless. 
10 Demski (1973) applies Blackwell's theorem to accounting using this perspective.  
11 As Khinchin (57) points out, the entropy concept first arose from the attempt to create a theoretical 
model for the transmission of information.  
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denote the entropy of the conditional probability distribution ( )M
n

M
k gsp |  and let  

( ) ( ) ( )( )( )∑
=

⋅=
N

n

M
n

MM
n

MM gSHgpGSH
1

||  

denote the expected value of the entropy of this conditional-probability distribution. Using these 

measures, we have the following result that describes relatively hard message sets in terms of the 

entropy of the conditional distributions. 

 

Theorem 3: Language-form ( )γσχ ,,,,,, MGSpΩ=  is hard if and only if ( ) 0=MM GSH | . 

Also, if χ  is compatible with a second language form, ( )γσχ ,',,,,,' MGSpΩ= , then χ  is harder 

than 'χ  if and only if ( ) ( )MMMM GSHGSH |'| <≤0 .  

 

Theorem 3 provides a second and equivalent measure of relative hardness using the entropy of 

the conditional distributions over the inverse image sets. The previous analogy between mean 

preserving spreads and relative hardness again conveys the intuition of the result. The entropy of 

a distribution increases as we spread the probability among all the realizations, reaching a 

maximum when all realizations are equally likely. Under a softer language form, the probability 

of the conditional distribution is spread among the unanchored realizations. So, for example, 

given the auditor infers the inverse image message M
ng , a softer language form would decrease 

the probability ( )M
n

M
n gsp |  and increase the probabilities ( )M

n
M
k gsp |  for nk ≠ . The entropy of the 

conditional distribution captures and quantifies the impact of changes in hardness. 

Theorem 3 offers additional intuition into the notion of hardness, as well as potential 

practical benefits. First, the entropy of a distribution is often interpreted to be a measure of 

uncertainty, so that Theorem 3 shows that harder language forms involve less uncertainty under 

this interpretation. Second, the entropy measure of relative hardness may be easier to calculate 

than the Blackwell measure. However, while the ordinal ranking clearly holds, it is not clear 

what, if anything, can be inferred from the cardinal values of the entropy measure. For example, 

it is not clear how we should interpret the quantitative difference in hardness between two 
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language forms if ( ) ( )MMMM GSHGSH |'| =2  holds. 

Theorems 2 and 3 together provide a link between Blackwell’s measure of relative 

informativeness and the entropy measure; to my knowledge this is the first time such a link has 

been established. The key to establishing this link is, of course, the construction of the anchor 

set. The anchors formally establish a set of states of the world that represent what each message 

“purports to represent.” By doing so, we are able to provide a non-trivial role for the accounting 

notion of representational faithfulness. The importance of building a formal model of 

representational faithfulness is underscored by Aumann’s earlier result demonstrating conditions 

under which experts could not disagree. As the preceding results demonstrate, experts can 

disagree if the language they use is soft. Further, the relative level of disagreement can be rank-

ordered. Hence, this model offers the potential for a comparative analysis of accounting 

standards based on their relative representational faithfulness. 

 

5. Summary and Suggestions for Future Research 

The objective of this paper was to develop a model of representational faithfulness by 

formally distinguishing between hard and soft information. The intuition for this distinction and 

the formal model were presented in Section 3 and I present the result of my analysis in Section 4. 

Theorem 1 showed that a necessary and sufficient condition for information to be soft was that 

the information be communicated using a nonsensical symbol. By nonsensical I mean a symbol 

that cannot be defined in terms of the states of the world, but which was nonetheless relevant to 

the decision-maker. I also showed that the comparability of the information partitions was 

neither a necessary nor a sufficient condition for the message space to be hard. Further I showed 

that whether or not an event is common knowledge does not dictate whether that event could be 

represented by a hard message. 

I also investigated the relationship between hard information as defined on information 

partitions and the underlying probability distribution, and defined a measure of relative hardness. 
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Theorem 2 showed that a harder language form would generate a more informative signal, using 

Blackwell’s notion of relative informativeness. Theorem 3 showed not only that the entropy of 

the conditional probability distribution offered an equivalent definition of hard information, but 

also that entropy could be used to rank order the language forms in terms of their relative 

hardness. Hence, entropy quantified hardness, and provides a quantification of relative 

informativeness in Blackwell’s sense. Although no specific applications of the hard/soft 

distinction in information have been formally developed, numerous research questions might 

benefit from the concept of soft information. I describe a few in more detail. 

In SFAC #2, FASB offer the use of fair value or replacement cost for valuing assets as an 

explicit example of the difficulties faced when accountants attempt to achieve representational 

faithfulness. However, this is just one example where the representational faithfulness of an 

accounting construct may be questioned. The procedures for estimating most reserves, such as a 

reserve on uncollectible receivables, inventory obsolescence, warranties and sales returns, or a 

reserve for litigation may all be described as examples that require accountants to clarify the 

representational faithfulness of the accounting information reported. Also the efficacy of 

standards, both auditing and accounting, might be analyzed using this distinction. In particular, 

modeling hard information as representational faithfulness may be a first step in constructing an 

analytical framework that corresponds to the conceptual framework of financial reporting 

provided in the Statements of Financial Accounting Concepts. 

Second, the effect of the hard/soft information distinction on the role of public 

accountants is particularly interesting. Often research portrays the role of public auditors as 

verifying unobservable signals and then focuses on possible collusion between the manager and 

the auditor against the investor, resulting in misrepresentations to the investor. While blatant 

collusion such as fraud clearly exists, most such collusion seems subtler, and more difficult to 

analyze within the current auditing models. For example, current approaches do not model well 

the possibility of honest disagreements between knowledgeable parties, on which most lawsuits 
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rest. The hard/soft distinction in information offers an approach to formalize the demand for 

expert opinions (including lawyers and economists as well as auditors). It also offers a way to 

explicitly model judgement or subjective evaluation of information that must be a part of any 

complete model of auditing. Auditing expertise may be related to soft information. An auditor 

does more than verify the accuracy of numbers in the financial statements; she also judges 

whether or not they are accumulated in accordance with GAAP on a consistent basis. If all 

people interpret information in the same way, then no judgement is required of the auditor: only 

with soft information does the auditor's judgement and expertise play a role.12 

Third, in the standard principal-agent model, the incentive problem arises solely because 

the agent’s effort is unobservable by the principal. An equally valid description of the problem 

might be that the agent’s effort is soft information. Thus even if the agent was honest, difficulty 

in contracting may arise. Further, these two different problems may arise simultaneously. The 

contract that solves the incentive problem when the action is unobservable may (or may not) be 

the same as the optimal contract when the outcome of the action is soft information. 

The three areas discussed above are only a few of the areas to which the hard/soft 

information distinction might be applied. Other areas include work on incomplete contracting, 

valuation, bounded rationality, common knowledge, and the mechanism design literature's 

analysis of the information requirements for implementation of an equilibrium, to name a few. 

For example, the hard/soft distinction can be easily extended to the framework of a Bayesian 

communication game, which has been applied to the principal-agent model (Myerson, (1982)) as 

well as to the mechanism-design literature (Reiter and Reichelstein, (1988)). Among other 

results, it is straightforward to show that the revelation principle will fail if information is soft, 

but holds for hard information. Thus the approach appears very flexible.  

                                                 
12 See Caplan and Kirschenheiter (2004) for an application of the hardness criteria to auditing expertise. 
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Table 1: Notation 
Ω : set of states of the world, with Ω∈ω  being a specific state of the world. 

p : probability distribution defined over set of states of the world, so that [ ]10,: →Ωp . 

S : Information partition of player one, called the manager, having elements Ss∈ . Similarly 

Gg∈  is the information partition of player 2, called the auditor. I write Ω≤S  and Ω≤G  

to indicate that both partitions are coarsenings of the set of states of the world.  

M : message set, with cardinality N , denoted as NM = , and composed of messages nm  for 

Nn ,...,1= , so that { } NnnmM ≤≤= 1 . 

σ : Signaling function for player 1 where MS →:σ . An analogous signaling function exists 

for player 2 and is denoted as MG →:γ . 

χ : Language form, composed of the set of states of the world, probability distribution over 

this set, information partitions for the players involved, a message set and signaling 

functions for the players, so that ( )γσχ ,,,,,, MGSpΩ= . 

MX : Anchor set for message set M . Anchor sets are subsets of the set of states of the world, 

or Ω⊂MX , and have elements M
nx  for Nn ,...,1= , so that { } Nn

M
n

M xX ≤≤= 1  
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APPENDIX 
 

Proof of Theorem 1: The proof utilizes a lemma that is first introduced and proved. 

 

Lemma 1: A language-form, ( )γσχ ,,,,,, MGSpΩ= , is hard if Ω≤M . 

 

Proof (of lemma 1): To show that χ  is hard, we need to show Ω∈∀ω  and Mmn ∈∀  that 

( )( ) nms =ωσ  if and only if ( )( ) nmg =ωγ . If Ω≤M , then Ω∈∀ω  there exists a unique message, 

Mmn ∈ , such that nm∈ω . By truthful reporting, that is, by condition ii) in assumption A2, we 

have ( )( ) nms =ωσ  if and only if nm∈ω  while ( )( ) nmg =ωγ  holds under the same conditions. 

Since this holds Ω∈∀ω  and Mmn ∈∀ , we have that χ  is hard as required, completing the proof 

of lemma 1 

 

Turning now to the proof of the theorem itself, we begin with sufficiency and follow with 

necessity. Let 'M be defined as in the theorem 1. Since 'M  is a coarsening of the set of states of 

the world, or Ω≤'M , we have that ( )',',',,,,' γσχ MGSpΩ=  is hard. Also, M  isomorphic to 'M  

means that Ω∈∀ω  we have that ( )( ) ( )( )ωσωσ sms n '==  and that ( )( ) ( )( )ωγωγ gmg n '== , which 

implies that ( )γσχ ,,,,,, MGSpΩ=  is also hard. 

Let ( )γσχ ,,,,,, MGSpΩ=  be hard. Consider the message set MSM =' , where 

{ }{ }Nn
M
nsM ≤≤= 1'  and where ( ){ }n

M
n mss 1−∈= σ  holds Mmn ∈∀ . From the functions ':' MG →γ  

and ':' MS →σ  by setting ( ) ( )nn mm '' 11 −− = γγ  and ( ) ( )nn mm '' 11 −− =σσ  for Nn ,...,1= . Clearly 

Ω≤'M , so the language form, ( )',',',,,,' γσχ MGSpΩ= is also hard, completing the proof of 
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theorem 1. 

 

Proof of Corollary 1: The proof follows immediately from Theorem 1 once we note that 

the messages set defined in Theorem 1 insures that MM GSM ==' . 

 

 Proof of Theorem 2: The proof utilizes a lemma that is first introduced and proved. 

 

Lemma 2: Let ( )γσχ ,,,,,, MGSpΩ=  and ( )γσχ ,',,,,,' MGSpΩ=  be two language 

forms that have the same anchor set, { } Ω⊂=≤≤
M

Nn
M
n Xx 1  where χ  is harder than 'χ . This 

means that, for the elements of the inverse image sets determined by each pair of anchors, 

MM
k

M
n Xxx ∈,  the following hold: 

a. ( ) ( ) ( )M
n

M
k

M
n

M
n

M
n

M
n gspgspgsp |'|'| ≥≥ , and  

b. ( ) ( )M
n

M
k

M
n

M
k gspgsp |'| ≤ , 

with at least one inequality strict. χ  is harder than 'χ  implies that there exists a NN ×  Markov 

matrix, B , having elements jkb  where MM
n Gg ∈∀ , MM

j Ss ∈∀  and MM
k Ss '' ∈∀  the following 

holds: ( ) ( )( )∑
=

×=
N

j
jk

M
n

M
j

M
n

M
k bgspgsp

1

||' . 

 

Proof of Lemma 2: Using the assumed existence of an anchor set, we will show that this 

together with the definition of relative hardness suffice to imply there exists a markov matrix B  

as described in the lemma. The proof is by construction, and can be informally explained as 

follows. First I show that B  can be written in terms of the elements of the two conditional 
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probability matrices. Second, I show that the elements in the columns of the B  matrix sum to 

one. Third, I show that the elements of B  are between 0 and 1. This final step is the complicated 

one. I use an algorithm where I start by writing each of the equations so that all have zero on the 

right-hand side but one. The first element is negative but the remaining elements of the B  matrix 

may be either positive or negative. Then I zero out all of the off diagonal elements of B , except 

for the first element, until only the diagonal elements are left and the first column are left. In this 

manner, I show that all the elements are positive but less than 1, and this completes the proof. 

To simplify the notation, without loss of generalization, let P  and 'P  denote the matrices 

of conditional distributions, where P  is harder than 'P . As is usual, denote the nth row and mth 

column of the P  matrix as nmp , and similarly for the 'P  matrix, so that,  

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )⎥⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

≡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

M
N

M
N

M
N

M
N

M

MM
N

MMM

MM
N

MMMM

NNNN

N

N

gspgspxsp

gspgspxsp
gspgspgsp

ppp

ppp
ppp

P

|||

|||
|||

L

MOMM

L

L

L

MOMM

L

L

21

22221

11211

21

22221

11211

 

and 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )⎥⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

≡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

M
N

M
N

M
N

M
N

M

MM
N

MMM

MM
N

MMMM

NNNN

N

N

gspgspxsp

gspgspxsp
gspgspgsp

ppp

ppp
ppp

P

|'|'|'

|'|'|'
|'|'|'

'''

'''
'''

'

L

MOMM

L

L

L

MOMM

L

L

21

22221

11211

21

22221

11211

. 

As is standard, the row element indicates the conditioning variable and the column element 

indicates the realization of the random variable, so for example, ( )M
n

M
mnm gspp |= . This means 

that for each row in P  and 'P , the sum of the row elements equals one. If B  exists, we have  

 'PBP =× .  

To show B  is markov, we need to show that such a B  exists where each element is non-negative 
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and the rows sum to one, or more specifically, where the following two conditions hold, 

App.i) 1
1

=∑
=

N

k
jkb  for each j, and 

App.ii) 10 ≤≤ jkb  for each jkb .  

As above, the jkb  element is in the jth row and kth column of the B  matrix. 

First, to show that such a matrix exists, it suffices to show that a solution exists for the 

NN ×  linear equations of the form 

nkNknNknkn pbpbpbp '=+++ L2211 . 

By definition of relative hardness, there exist NN ×  numbers, nkε , each less than 1 in absolute 

value, defined as nknknk pp ε−= ' , where 0≥nnε , with at least one inequality strict, where 0≤nkε  

if nk ≠ , again, with at least on inequality strict, and j∀ , 0
1

=∑
=

N

k
nkε . Further, by definition, nk ,∀  

we have nknn pp ≥  and nknn pp '' ≥ , so that in particular, 0>nnp . This holds n∀ , and in particular 

for jn = . Substituting back into the equation, we have 

 jkjkjkNkjNkjkj ppbpbpbp ε−==+++ 'L2211 . 

Hence, we can write the element jkb  as follows: 

( )

jj

jm
mkjmjkjk

jk p

bpp
b

∑
≠

−−

=

ε

. 

Since 0>jjp , this proves the B matrix exists. 

For condition App.i), i.e. to show 1
1

=∑
=

N

k
jkb  for each j, note that we have Nj ,...,1=  

equations where jkjkjk pp ε−=−' . Substituting for jkp'  from above, each of these equations can 
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be written as follows: 

( )
( )

( ) jNNNjNNjNj

jNjNjj

jNjNjj

bpbpbp

bpbpbp

bpbpbp

ε

ε

ε

−=−+++

−=++−+

−=+++−

1

1

1

2211

22222121

11212111

L

M

L

L

 

Summing these equations, we get 

0111
1

1
11

22
1

11 =−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
− ∑∑∑∑

====

N

k
j

N

k
NkjN

N

k
kj

N

k
kj bpbpbp εL . 

There are N such equalities, with 0>jjp  for the jth equation, so that the system of equations is 

solved by 1
1

=∑
=

N

k
jkb  for all j.  

For condition App.ii), i.e. to show 10 ≤≤ jkb  for each jkb . First, note that the product of 

two markov matrices is itself markov. This means that we can focus on the case where P  and 'P  

differ only by two elements. Again, without loss of generalization, let 1111 'pp > , 1212 'pp < , and 

njnj pp '=  for all other elements of the matrices (i.e. for all 1>n  or 2>j ). Since njnj pp '=  for 

1>n  or 2>j , the jkb  elements of the B  matrix for 1>j  or 2>k  are given as 0=jkb  for 

2>≠ kj  and 1=jjb  for 2>j . More specifically, the B  matrix is given as follows: 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

000

01
00
00

21

2131

2221

1211

NN bb

bb
bb
bb

B
MOMMM

L

L

L

 

Hence, we need show condition (ii) holds only for the N elements in the first two columns of B , 

(i.e. the jkb  elements with 1=k  or 1=k ), or equivalently, to solve the equations for the first two 

columns in the 'P  matrix.  
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To see this, consider the equations for the first column in the 'P  matrix, denoted as CP 1' . The 

value for each element in this row is given by the following matrix product: 

.

'

'
'

'
⎥
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⎥

⎦

⎤
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⎢
⎢
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⎥

⎦
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⎢

⎣

⎡
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⎥

⎦
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⎢
⎢
⎢
⎢

⎣

⎡

=

1

21
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21

22221

11211

1

1

21

11

1

NNNNN

N

N

C

N

C

b

b
b

ppp

ppp
ppp
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p

p
p

P
M

L

MOMM

L

L
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This produces the following system of N equations. 

111212111

21211221221121

1111111121121111

NNNNNNN

NN

NN

ppbpbpbp

ppbpbpbp
ppbpbpbp

==+++

==+++

−==+++

'

'
'

L

M

L

L ε

 

Since the elements of the P  and 'P  matrices are given, this is a system of N equations in the jkb  

unknowns, with 1=k  and Nj ,...,1= . I develop an algorithm that can be applied to the N 

elements 2jb , Nj ,...,1= , to show that condition App.ii) also holds for these elements as well. 

 Before proceeding with the algorithm, I rearrange the above system of equations to 

provide a basis for the algorithm. Subtracting 1np  from both sides of the nth equation, the N 

equations shown above can be rewritten as the following equations denoted [A.1] through [A.N]. 

[ ] ( )
[ ] ( )
[ ] [ ]( )
[ ] ( ) 01                    

           13
01                     2

1                     1

1212111

1221221121

111121121111

=+++−−
−−

=+++−−

−=+++−−

NNNNN

NN

NN

bpbpbpNA
NAA

bpbpbpA
bpbpbpA

L

M

L

L

:.
:..

:.
:. ε

. 

To show condition App.ii) holds, I identify a series of manipulations to the system of equations that 

adds or subtracts a fraction of one equation to a second equation while ensuring no sign change on 

the coefficients of the 1jb  variables. Before we begin, insure the coefficients on each 1jb  variable, 

Nj ,...,2=  are non-zero, and then start with the equations having a zero coefficient on the 11b  
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variable (we assumed only A.N meets this condition). The process is given in several steps below. 

 

Step 1: In this step, I add multiples of the different equations to insure that the probabilities in each 

column are positive above some specified row, and all the diagonal values equal 1. At the 

end of this step, I will have created a new probability matrix, *P , with the following form: 

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
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⎢
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⎣

⎡
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01

31

5351

4434241

3353231
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MOMMMMM
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L
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N

N
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pppp
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pppp

P

**

**
****
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****

*  

 Find the equation n that has the greatest number of njp  probabilities equal to zero and make 

this equation A.N. Starting with equation A.N-1, re-order the equations so that the ascending 

equations all have zeroes only for the same j entries for which A.N has a zero probability. 

For any equation that has a zero for a njp  probability that is non-zero in A.N, replace this 

with a new equation having probabilities denoted as njp *  that are non-zero, but where the 

nnp *  probabilities are still maximal. For example, suppose equation A.2 has 023 =p . 

Multiply A.N by 0>e  and add this to equation A.2 to give a new set of probabilities, but 

choose 0>e  sufficiently small to insure that 22*p  is still maximal over all the new jp 2*  

probabilities. That such an 0>e  exists can be seen as follows: identify all m such that 

( ) 03 >− NNm pp . This set is non-empty, since ( ) 03 >− NNN pp . Next choose 0>e  such that 

( )
( ) e

pp
pp

NNm

m >
−
−

3

222 ; this insures that eppp N 32222 +=*  is maximal. For the final part of this first 
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step, for each equation A.n, Nn ≤≤2 , divide this equation by nnp . We now have a system of 

equations similar to the following system. 

[ ] ( )
[ ] ( )
[ ] [ ]( )
[ ] ( )
[ ] [ ]( )
[ ] ( ) ( ) ( ) ( ) ( )

[ ] ( ) 0001                    
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'''':.
:..

''':.
:..

''':.
:. ε

 

In particular, for 1>n , the coefficient on the 1nb  variables in equation A.n is 1, while the 

coefficient on every other 1nb  variable is positive but less than 1, except for the coefficients 

on the 1nb  variables where the coefficient is zero in equation A.N. 

Step 2: Steps 2, 3 and 4 together will change the *P  matrix into and an identity matrix. I do this by 

zeroing out all the off-diagonal probabilities, starting with those in the last column. Starting 

with equation A.N-1, determine if ( )NNp 1−*  is the smallest of the ( ) jNp 1−* probabilities for 

1>j . If so, zero it out by multiplying A.N by ( )NNp 1−*  and subtracting the resulting equation 

from A.N-1; then proceed to equation A.N-2 and repeat step 2 for that equation. Continue to 

zero out probabilities on 1Nb  in this manner until all are zeroed out, in which case proceed to 

Step 4, or until a non-minimal coefficient is found, in which case, proceed to Step 3. 

Step 3: Suppose the coefficient on 1Nb  is minimal for each equation A.N-1 up to and including 

A.n+1, but not on A.n. Find the smallest probability in equation A.n; suppose it is njp * . 

Then multiply A.N by njp *  and subtract the resulting equation from A.n. All the coefficients 

remain positive, since we multiplied by the smallest probability in A.n, and the probability 

on 1nb , call it nnp **  remains maximal. Divide A.n through by this new probability nnp ** , 
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so that the coefficient on 1nb  is now 1. Continue this process until the coefficient on 1Nb  is 

minimal, and then repeat step 2 for A.n. 

Step 4: Having zeroed out the coefficient on 1Nb  for each of the equations A.1 through A.N-1, next 

turn to the coefficient on ( )11−Nb  for the equations A.N and A.N-2 through A.1. Using 

equation A.N-1, perform Steps 2 and 3 in order to zero out these coefficients in the same 

manner as was done for the coefficients on bN1. Repeat these steps until all the off-diagonal 

coefficients have been zeroed out on variables 1jb  for j > 1. Note: the right-hand side of 

equations A.2 through A.N is still zero to this point. Finally, zero out the probabilities in the 

first column, those multiplied by ( )111 b− , in equations A.2 through A.N by multiplying 

equation A.1 by the coefficient on ( )111 b−  and subtracting from each equation A.2 through 

A.N.  

 

 After completing Steps 1 through 4, we are left with N equations having zero coefficients for 

all off-diagonal elements. The right-hand side of equations A.2 through A.N is either positive or zero 

depending on whether the coefficient on (1-b11) in the original equation was non-zero or zero. The 

right-hand side of A.1 is negative, but so is the coefficient on (1-b11), so that cross-multiplying and 

solving for b11 proves that b11 is also positive. As shown above, the sum of the on 1jb  variables 

equals 1, so all the 1jb  variables are between 0 and 1, completing the proof that condition App.ii) 

holds. This completes the proof of Lemma 2. 

 

Proof of Theorem 2: Using Lemma 2, we have that 'P  can be formed from P  by 

multiplication by a Markov matrix. Then, applying the sufficiency portion of Blackwell’s 
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theorem, we have information structure χ  is statistically sufficient for 'χ , so that for any 

expected utility maximizing player, conditioning on χ  provides a higher expected utility than 

conditioning on 'χ . Hence χ  is preferred to 'χ  by this player, as stated in the theorem. This 

completes the proof of theorem 2. 

 

Proof of Theorem 3: First, suppose language-form ( )γσχ ,,,,,, MGSpΩ=  is hard. 

Corollary 1.1 tells us that ( ) 0=M
n

M
k gsp |  if kn ≠  and ( ) 1=M

n
M
k gsp |  if kn = . Since n∀  we have 

( )( ) ( ) 01 == ln|ln M
n

M
n gsp , ( ) 0=MM GSH |  follows immediately. If ( ) 0=MM GSH | , then n∀ , there 

exists a single *kk =  such that ( ) 1=M
n

M
k gsp |* , while for *kk ≠ , ( ) 0=M

n
M
k gsp |  holds. However, 

the anchor set ensures, ( ) 0>M
n

M
n gsp | , which implies nk =* , implying that χ  is hard.  

Next, let ( )γσχ ,',,,,,' MGSpΩ=  be a second language form and suppose that χ  is 

relatively harder than 'χ . From Lemma 2, we know that we can write the conditional probability 

matrices as 'PBP =× , where B  is a Markov matrix and P  and 'P  are conditional probability 

matrices for the language form χ  and 'χ , respectively. Without loss of generality, suppose P  

and 'P  differ only on 1=n , so that k∀ , and for 1>n  we have ( ) ( )M
n

M
k

M
n

M
k gspgsp |'| = . This 

means that to show ( ) ( )MMMM GSHGSH |'| <≤0 , it suffices to show ( ) ( )MMMM gSHgSH 11 |'| <  

holds. By definition, we have ( ) ( )RMM PHgSH 11 ≡|  and ( ) ( )RMM PHgSH 11 '|' ≡ , where RP1  and RP 1'  

are the first row matrices in the matrices P  and 'P , respectively. Also, from above we have that 

RR PBP 11 '=× , where B  is independent of RP1 . I next use two properties of the entropy measure. 

First, entropy is non-negative. Second, for two independent probability distributions 1A  and 2A , 

( ) ( ) ( )2121 AHAHAAH +=×  (see Khinchin (1957), equation 2, page 5). Together these imply the 
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following 

( ) ( ) ( ) ( ) ( )RRRR PHBHPHBPHPH 1111 >+=×=' . 

This proves that χ  harder than 'χ  implies ( ) ( )MMMM GSHGSH |'| <≤0 . 

Next, suppose ( ) ( )MMMM GSHGSH |'| <≤0  holds. By assumption, χ  and 'χ  can be 

compared based on hardness, so that, by Lemma 2, we know there exists a Markov matrix B  

where either 'PBP =×  or PBP =×' . The second can be shown not to hold by contradiction. 

Suppose PBP =×'  holds. This implies ( ) ( ) ( ) ( ) ( )''' PHBHPHBPHPH >+=×= , which in turn 

implies ( ) ( )MMMM GSHGSH |'| > , providing the contradiction. Hence 'PBP =×  holds, 

implying χ  is harder than 'χ , which completes the proof of Theorem 3. 

 


