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Nonlinear forecasting as a way of
distinguishing chaos from
measurement error in time series

George Sugihara” & Robert M. May"
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+ Department of Zoalogy, Oxford University, Oxford, OX1 3PS, UK

An approach is presented for making short-term
predictions about the trajectories of chaotic
dynamical systems. The method is applied to data
on measles, chickenpox, and marine phytoplankton
populations, to show how apparent noise associ-
ated with deterministic chaos can be distinguished
from sampling error and other sources of externally
induced environmental noise.
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FIG. 1 a Time series of 1,000 points (which in many ways is indistinguishable
from white nolse) generated by taking first-differences, A, =X, — X, of
the tent map: X,,,=2%, for 0.5>x,>0; x4 =2~2x, for 1>x >05. b,
Predicted values two steps Into the future (T, =2) versus observed values
for the tent delta time serles depicted in a. Specifically, the first 500 points
in the serias were used to generate a library of patterns, which were then
used as a basis for making predictions for each of the second 500 points.
As described in the text, the predictions were made using a simplex
projection method, and in this figure the embedding dimension and lag time
are £ =3 and T=1, respectively, Here the coefficient of correlation between
predicted and actual values is p =0.997 (N =500). For comparison, we note
that the corresponding correlation coefficlent obtained using the first half
of the series to predict the second half with an autoregressive linear model

Two sources of uncertainty in forecasting the motion of natural
dynamical systems, such as the annual densities of plant or
animal populations, are the errors and fluctuations associated
with making measurements (for example, sampling errors in
estimating sizes, or {luctuations associated with unpredictable
environmental changes from year to year), and the complexity
of the dynamics themselves (where deterministic dynamics can
easily lead to chaotic trajectories),

Here we combine some new ideas with previously developed

techniques'-'%™-2¢ to make short-term predictions that are
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(where the predictions are based on the weighted average of three linear
maps, one for each of the three different T-values that give the best results
in such a linear scheme) is p =0.04. ¢, Exactly as for Fig. b, except here the
predictions are five time steps into the future (T,=5). The correlation
coefficient between predicted and actual values is now p =0.89 (N =3500).
o, Summary of the trend between b and ¢, by showing p between precicted
and observed values in the second half {second 500 pointsj of the time
series of a as a function of T,. As in b and ¢, the simplex projection method
here uses £=3 and r=1. That prediction accuracy {as measured by the
coefficlent of correlation between predicted and observed values) fails as
predictions extend further into the future is a characteristic signature of a
chaotlc attractor,



based on a library of past patterns in a time series'. By comparing
the predicted and actual trajectories, we can make tentative
distinctions between dynamical chaos and measurement error:
for a chaotic time series the accuracy of the nonlinear forecast
falls off with increasing prediction-time interval {at a rate which
gives an estimate of the Lyapunov exponent’), whereas for
uncorrelated noise, the forecasting accuracy is roughly indepen-
dent of prediction interval. For a relatively short time series,
distinguishing between autocorrelated noise and chaos is more
difficult; we suggest a way of distinguishing such ‘coloured’
noise [rom chaos in our scheme, but questions remain, at least
for time series of finite length.

The method ulso provides an estimate of the number of
dimensions, or ‘uctive variables’, of the attractor underlying a
time series that is identified as chaotic. Unlike many current
approaches to this problem (for example, that of Grassberger
and Procaccia®}, our method does not require a large number
of data points, but seems to be useful when the observed time
series has relatively few points (as is the case in essentially all
ecological and epidemiological data sets).

Forecasting for a chaotic time series

Below, we outline the method and show how it works by apply-
ing it to a chaotic time series generated artificially from the
deterministic ‘tent map', We then apply it to actual data on
meusles and chickenpox in human populations (which have
been previously analysed using different techniques™'*) and on
diatom populations, We conclude that the method may be
capable of distinguishing chaos from meuasurement error even
in such relatively short runs of real data,

As an example of the difficulties in short-range forecasting,
we consider the chaotic time series shown in Fig. 1a. This time
series was generated from the first-difference transformation
(x4 —X,) on the deterministic tent map or triangular ‘return
map" (described in detail in the legend to Fig. la). Here and
elsewhere is this report, we first-difference the data partly to
give greater density in phase space to such chaotic attractors as
may exist, and partly to clarify nonlinearities by reducing the
effects of any short-term linear autocorrelations. It should be
noted, however, that both in our artificial examples and in our
later analysis of real data, we obtain essentially the same results
il we work with the ruw time series (without first-differencing).
With the exception of a slight negative correlation between
immediately ndjucent values, the sequence in Fig. 1a is uncorre-
lated, and is in many ways indistinguishable from white noise;
the null hypothesis of a flat Fourier spectrum cannot be rejected
using Bartlett's Kolmogorov-Smirnov test, with P =085,
Becuuse nonadjacent values in the time series are completely
uncorrelated, standard statistical methods (that is, linear
autoregression) cannot be used to generate predictions two or
more steps into the future that are significantly better than the
mean value (that is, zero) for the serics.

Figure 1h and ¢ show the results of local forecasting with the
above data, The basic idea here, as outlined below, is that il
deterministic laws govern the system, then, even i the dynamical
behaviour is chaotic, the future may to some extent be predicted
from the behaviour of past values that are similar to those of
the present.

Specifically, we lirst choose an ‘embedding dimension®, E,
and then use lagged coordinates to represent each lagged
sequence of data points {x;, X,y Xymapy s o0y Xpos- 1y} 4S5 @ point
in this E-dimensional space; for this example we choose 7= 1,
but the results do nol seem to be very sensitive to the value of
7, provided that it is not large"™'*. For our originul time series,
shown in Fig. la, each sequence for which we wish to make a
prediction—each ‘predictee’—is now to be regarded as an E-
dimensional point, comprising the present value and the E —1
previous vulues each separated by one lag time 7. We now locate
all nearby E-dimensional points in the state space, and choose
a minimal neighbourhood defined to be such that the predictee
is contained within the smallest simplex (the simplex with

minimum diameter) formed from its E +1 closest neighbours;
a simplex containing E +1 vertices {neighbours) is the smallest
simplex that can contain an E-dimensional point as an interior
point (for points on the boundary, we use a lower-dimensional
simplex of nearest neighbours). The prediction is now obtained
by projecting the domain of the simplex into its range, that is
by keeping truck of where the points in the simplex end up after
p time steps. To obtain the predicted value, we compute where
the ariginal predictee has moved within the range of this simplex,
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FIG. 2 a Solid line shows p between predicted and observed values for the
sscond half of the time series defined in b (which is, in fact, a sine wave
with additive noise) as a function of 7,,. As discussed in the text, the aczuracy
of the prediction, as measured by p, shows no systematic dependerce on
T,,. By contrast, the time serles shown in ¢ (which is the sum of two separate
tent map series) does show the decrease in p with increasing T,, as
ustrated by the dashed line, that is characteristic of a chaotic sequence.
Both curves are based on the simplex methods described in the text, with
E=3 and 7=1. b, First 150 points in the time series generated by taking
discrete points on a sine wave with unit amplitude (x, =sin (0.5t)), and adding
a random varlable chosen (independently at each step) uniformly fram the
interval [~0.5, 0.5]. That is. the series is generated as a ‘sine wave — 50%
noise’. ¢ Time series illustrated here is generated by acding together two
independent tent map sequences.



giving exponential weight to its original distances from the
relevant neighbours. This is a nonparametric method, which
uses no prior information about the model used to generate the
time series, only the information in the output itself, It should
apply to any stationary or quasi-crgodic dynamic process,
including chaos, This method is a simpler variant of several
more complicated techniques explored recently by Farmer and
Sidorowich® and by Casdagli”.

Figure 1b compares predicted with actual results, two time
steps into the future. Figure 1c makes the same comparison,
but at five time steps into the future. There is obviously more
seatter in Fig. 1¢ than in Fig. 15, Figure 14 quantifies how error
increases as we predict further into the future in this example,
by plotting the conventional statistical coefficient of correlation,
p, between predicted and observed values as a function of the
prediction-time interval, T, (or the number of time steps into
the future, p). Such decrease in the correlation coefficient with
increasing prediction time is a characteristic feature of chaos
(or equivalently, of the presence of a positive Lyapunov
exponent, with the magnitude of the exponent related to the
rate of decrease of p with T,), This property is noteworthy,
because it indicates a simple way to differentiate additive noise
from deterministic chaos: predictions with additive noise that
is uncorrelated (in the first-differences) will seem to have a fixed
amount of error, regardless of how far, or close, into the future
one tries to project, whereas predictions with deterministic chaos
will tend to deteriorate as one tries to forecast further into the
future, Farmer and Sidorowich®'® have derived asymptatic
results (for very long time series, N » 1) that describe how this
error typically propagates, over time, in simple chaotic systems,
The standard correlation coefficient is one of several alternative
measures of the agreement between predicted and observed
values; results essentially identical to those recorded in Figs 1-6
can be obtained with other measures (such as the mean squared
difference between predicted and observed values as a ratio to
the mean squared error),

Forecasting with uncorrelated noise

Figure 2a (solid line) shows that, indeed, this signature of p
decreasing with T, does not arise when the erratic time series
is in fact a noisy limit cycle. Here we have uncorrelated additive
noise superimposed on a sine wave (Fig, 2b), Such uncorrelated
noise is reckoned to be characteristic of sampling variation.
Here the error remains constant as the simplex is projected
furtherinto the future; past sequences of roulette-wheel numbers
that are similar to present ones tell as much or little about the
next spin as the next hundredth spin. By contrast, the dashed
line in Fig. 2a represents p as a function of T,, for a chaotic
sequence generated as the sum of two independent runs of tent
map; that is, for the time series illustrated in Fig, 2¢. Although
the two time series in Fig. 2b and Fig. 2¢ can both look like the
sample functions of some random process, the characteristic
signatures in Fig. 2a distinguish the deterministic chaos in Fig.
2¢ from the additive noise in Fig, 2b.

The embedding dimension

The predictions in Figs 1 and 2 are based on an embedding
dimension of E =3. The results are, however, sensitive to the
choice of E. Figure 3a compares predicted and actual results
for the tent map two time steps ahead (T,=2), as in Fig. 1b,
except that now E =10 (versus E =3 in Fig. 1b). Clearly the
predictions are less accurate with this higher embedding
dimension. More generally, Fig. 35 shows p between predicted
and actual results one time step into the future (T,=1) asa
function of E, for two different choices of the lag time (=1
and 7=2). It may seem surprising that having potentially more
information—more data summarized in each E-dimensional
point, and a higher-dimensional simplex of neighbours of the
predictee—reduces the accuracy of the predictions; in this
respect, these results differ from results reported by Farmer and
Sidorawich for parametric forecasting involving linear interpo-
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FIG. 3 & Similar to Fig. 1b, this figure shows predictions one time step into
the future (7,=1) versus observed values, for the second 500 points In
the tent map time series of Fig 14, with the difference that here we used
an embedding dimension £ =10 (In contrast to £=3 in Fig, 1b; the lag time
remains unchanged at ==1), As discussed In the text, the accuracy of the
prediction deterlorates as £ gets tao large p =0,25, N = 500), b, Correlation
coefficient between predicted and observed results, p, Is shown as a function
of £ for predictions one time step Into the future (T, =1), The relatienship
Is shown for r=1 and 7=2, The figure Indicates how such empirical studies
of the relation between p and £ may be used to assess the optimal £

lation to construct local polynomial maps®, We think this efect
is caused by contamination of nearby points in the higher-
dimensional embeddings with points whose earlier coordinates
are close, but whose recent (and more relevant) coordinates are
distant, If this is so, our method may have additional applica-
tions as a trial-and-error method of computing an upper-bound
on the embedding dimension, and thence on the dimensionality
of the attractor (see also refs 2, 6, 7).

Problems and other approaches

We have applied these ideas to a variety of other ‘toy models’,
including the quadratic map along with other first-order
difference equations and time series obtained by taking points
at discrete time intervals from continuous chaotic systems such
as those of the Lorenz and Rossler models (in which the chaotic
orbits are generated by three coupled, nonlinear differential
equations). The results for p as a function of T, are in all cases
very similar to those shown in Fig, 1d, Even in more complicated
cases, such as those involving the superposition of different
chaotic maps, we observe a decline in pversus T, here, however,
the signature can show a step pattern, with each step correspond-
ing to the dominant Lyapunov exponent for each map.

So far, we have compared relationships between p and T, for
chaotic time series with the corresponding relations for white
noise. More problematic, however, is the comparison with p-T,
relationships generated by coloured noise spectra, in which there
are significant short-term autocorrelations, although not long-



term ones, Such autocorrelated noise can clearly lead to correla-
tions, p, between predicted and observed values that decrease
as T, lengthens. Indeed, it seems likely that a specific pattern
of autocorrelations could be hand-tailored, to mimic any given
relationship between p and T, (such as that shown in Fig. 1d)
obtained from a finite time series. We conjecture, however, that
such an artifically designed pattern of autocorrelation would in
general give a flatter p-versus- E relationship than those of simple
chaotic time series corresponding to low-dimensional attractors
{for example, see Fig. 3b). Working from the scaling relations
for error versus 7, in chaotic systems™'®, Farmer (personal
communication) has indeed suggested that asymptotically
(for very large N), the p-T, relationships generated by
autocorrelated noise may characteristically scale differently from
those generated by deterministic chaos. Although we have no
solution to this central problem——which ultimately may not have
any general solution, at least for time series of the sizes found
in population biology—we suggest that an observed time series
may tentatively be regarded as deterministically chaaotic if, in
addition to a decaying p-T, signature, the correlation, p,
between predicted and observed values obtained by our methods
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FIG. 4 a Time series generated by taking flrst differences, X,., — X, of the
monthly number of cases of measles reported In New York City between
1928 and 1972 (the first 532 points in the sequence shown here). After
1963, the introduction of Immunization against measles had a qualitative
effect on the dynamics of infection; this can be seen in the later part of
the sequence illustrated here, b, Using the methods described earlier, the
first part of the serles in Fig. 4a {216 points, 1928 to 1946)) was used to
construct a library of past patterns, which were then used as a basis for
predicting forward from each point in the second part of the series, from
1946 to 1963, Predicted and observed values are shown here for predictions
one time step into the future (7, =1), using £ =6 and 7=1. The correlation
coefficient betwaen predicted and abserved values Is p=085 (P<107°
for N=2186), For comparison, the corresponding prediction based on an
autoregressive linear model (composed of five optimal linear maps, compare
Fig. 1b) gives p=0.72 (which is significantly different from p=0.85 at the

is significantly better than the corresponding correlation
coefficient obtained by the best-fitting autoregressive linear pre-
dictor (see also, ref. 16), For the tent map, as detailed in the
legend to Fig. 1, b and ¢, our nonlinear method gives p values
significantly better than those from autoregressive linear models
(composed of the weighted average of the three best linear
maps).

Most previous work applying nonlinear theory to experi-
mental data begins with some estimate of the dimension of the
underlying attractor’™’. The usual procedure (for exceptions,
see refs 2, 6, 7, 25) is to construct a state-space embedding for
the time series, and then to calculate the dimension of the
putative attractor using some variant of the Grassberger-
Procaccia algorithm®, A correlation integral is calculated that is
essentially the number of points in E space separated by a
distance less than /, and the power-law behaviour of this correla-
tion integral (I") is then used to estimate the dimension, D, of
the attractor (2= v}, This dimension is presumed to give a
measure of the effective number of degrees of freedom or ‘active
modes’ of the system, An upper bound on a minimal embedding
dimension (which can be exceeded when the axes of the embed-
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P < 0.0005 level). ¢, As inFig, 3b, p between predicted and observed results,
is shown as a function of £ {for 7,=1 and ==1), This figure indicates an
optimal embedding dimension of £ ~5-7, corresponding to a chaotic attrac-
tor with dimension 2-3. d, Here p, between predicted and observed results
for measles, Is shown as a function of T, {for £=6 and r=1). For the
points connected by the solid lines, the predictions are for the second half
of the time series (based on a library of patterns compiled from the first
half). For the points connected by the dashed lines, the forecasts ard the
library of patterns span the same time period (the first half of the data).
The similarity between solid and dashed curves indicates that secular trends
in underlying parameters do not introduce significant complications here.
The overall detline in prediction accuracy with increasing time into the future
is, as discussed in the text, a signature of chaotic dynamics as distinct from
uncorrelated additive noise.



ding are not truly orthogonal) is Eq;, <2D+1, where D is the
attractor dimension™'®, The scaling regions used to estimate
power laws by these methods are typically small and, as a
consequence, such calculations of dimension involve only a
small fraction of the points in the series (that is, they involve
only a small subset of pairs of points in the state space), In
other words, the standard methods discard much of the informa-
tion in a time series, which, because many natural time series
are of limited size, can be a serious problem. Furthermore, the
Grassberger-Procaccia and related methods are somewhat more
qualitative, requiring subjective judgement about whether there
is an attractor of given dimensions. Prediction methods, by
contrast, have the advantage that standard statistical eriteria can
be used to evaluate the significance of the correlation between
predicted and observed values. As Farmer and Sidorowich™'®,
and Casdagli’, have also emphasized, prediction methods
should provide a more stringent test of underlying determinism
in situations of given complexity. Prediction is, after all, the sine
qua non of determinism.

Time series from the natural world

Measles, For reported cases of measles in New York City, there
is 2 monthly time series extending from 1928 (ref, 17). After
1963, immunization began to alter the intrinsic dynamics of this
system, and so we use only the data from 1928 to 1963 (N =432).
These particular data have received a lot of attention recently,
and they are the focus of a controversy about whether the
dynamics reflect a noisy limit cycle? or low-dimensional chaos
superimposed on a seasonal cycle'® ', In particular, the data
have been carefully studied by Schaffer and others'*'**, who
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FIG. 5 a As for Fig. 48 except the time series comes from taking first-
differences of the monthly numbers of reported cases of chickenpox In New
York City from 1928 to 1972. b, As in Fig. 4b, predicted and observed
numbers of cases of chickenpox are compared, the predictions being one
time step into the future, T,=1 (here, E=5 and r=1), The correlation
coefficient between predicted and observed values Is p=0.82; an
autoregressive linear model alternatively gives predictions which have p=
0,84, In contrast to Fig. 4b for measles, here there Is no significant difference

have tested for low-dimensional chaos using a variety of
methods, including the Grassberger-Procaccia algorithm', esti-
mation of Lyapunov exponents', reconstruction of Poincare
return maps'™"!, and model simulations'®**, Although it is not
claimed that any of these tests are individually conclusive,
together they support the hypothesis that the measles data are
described by a two- to three-dimensional chaotic attractor.
Figure 4a shows the time series obtained by taking first
differences, X+, — X, of these data, As discussed above, the
first difference was taken to ‘whiten’ the series (that is, reduce
autocorrelation) and to diminish any signals associated with
simple cycles (a gossibi]ity raised by proponents of the additive
noise hypothesis”), We then generated our predictions by using
the first half of the series (216 points) to construct an ensemble
of points in an E-dimensional state space, that is, to construct
a library of past patterns, The resulting information was then
used to predict the remaining 216 values in the series, along the
lines described above, for each chosen value of E. Figure 4b,
for example, compares predicted and observed results, one time
step into the future (T, = 1 month), with E =6, Figure 4¢ shows
p between predicted and observed results as a function of E
for T, = 1. Taking the optimal embedding dimension to be that
yielding the highest correlation coeflicient (or least error)
between prediction and observation in one time step, it is seen
from Fig. 4c¢ that E=5-7. This accords with previous
estimates'®'® made using various other methods, and is con-
sistent with the finding of an attractor with dimension D =2-3.
The points joined by the solid lines in Fig. 4d show p as a
function of 7,, (for E =6), Prediction error seems to propagate
in a manner consistent with chaotic dynamics. This resuit, in
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between our prediction technique and standard linear autoregressive
methods, ¢, Correlation coefficient between predicted and cbserved results
for chickenpox, p, shown as a function of £ for predictions one time step
into the future {T,=1 and r=1). o, Compare with Fig. 4d; p, between
predicted and observed values, as a function of 7, (with £=5 and r=1) Is
shown, Here the lack of dependence of p on T, which Is in marked contrast
with the pattern for measles in Fig. 4d indicates pure additive noise
(superimposed on a basic seasonal cycle).




combination with the significantly better performance (P <
0.0005) of our nonlinear predictor as compared with an optimal
linear autoregressive model (see legend ta Fig. 4b) agrees with
the conclusion that the noisy dynamics shown in Fig. 4a are,
in fact, deterministic chaos''™'".

For data from the natural world, as distinct from artificial
models, physical or biological parameters, or both, cun undergo
systematic changes over time, In this event, libraries of past
patterns can be ol dubious relevance to an altered present and
even-more-different future. In a different context, there is the
example of how secular trends in environmental variables can
complicute an analysis of patterns of fluctuation in the abund-
ance of bird species'™!'
secular trends might confound our forecasting methods in the
following way. Rather than using the first hall of the time series
o compile the library of patterns, and the second half to compute
correlations between predictions and observations, we instead
investigate the case in which the library and forecasts span the
same time period. Therefore we focus our predictions in the
lirst half of the series, from which the library was drawn. To
avoid redundancy, however, between our forecasts and the
model, we sequentially exclude points from the library that are
in the neighbourhood of cach predictee (specifically, the Er
points preceding and lollowing each forecast). The points con-
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FIG. 6 a Time series of first differences, x,.4 — &, of the weekly numbers
of diatoms in seawater samples taken at Scripps Pier, San Diego, from 1929
to 1939 (N =830). b, Using the first half of the time series in a to construct
a library of patterns, we use the simplex projection methods described in
the text to predict one week (T,=1) into the future from each point in the
second half of the series (N =415); here £=3, and =1, The correlation
coefficient between predicted and observed values is p=0,42 (P<10™%
for N =415); the best autoregressive linear predictions (composed of three
optimal linear maps) give p =013, which Is significantly less than the
nonlinear result (P < 0,0005). ¢, As in Figs 4¢ and &¢, p between predicted
and observed values is shown as a function of the choice of £ for predictions

. We can gauge the extent to which’

nected by the dashed lines in Fig, 4d show the p versus T,
relationship that results from treating the measles data in this
way (again with E =6). The fairly close agreement between
these results (for which the library of patterns and the forecasts
span the same time period) and those of the simpler previous
analysis (the solid line in Fig. 4d) indicates that within these
time frames, secular trends in underlying parameters are not
qualitatively important.

Chickenpox. Figure Sa-d repeat the process just described for
measles, but now for monthly records of cases of chickenpox
in New York City from 1949 to 1972 (ref. 20). Figure 5a shows
the time series of differences, X,., — X,. The 532 points in Fig.
5a are divided into two halves, with the first half used to
construct the library, on which predictions are made for the
second 266 points. These predictions are compared with the
actual data points, as shown for predictions one time step ahead
(T, =1 month) in Fig, 5b. In Fig. 5b, E =35; Fig. 5¢ shows that
an optimum value of E, in the sense just defined, is about 5 to
6. By contrast with Fig.4d for measles, p between predicted
and observed results for chickenpox shows no dependence on
T,: one does as well at predicting the incidence next year as
next month. Moreover, the optimal linear autoregressive model
performs as well as our nonlinear predictor, We take this to
indicate that chickenpox has a strong annual cycle (as does

050

[}

044

Coetficient (p)

(IR

Correlation

Embedding Dimension (E)

0.5
0.4+

1hiA

Correlation Coefticient (P} =

m T T T T T

n | 2 k) 4 5

> 4

Prediction Time (Tp)

two time steps Into the future (7,=2 and 7=1), This flgure indicates an
optimal £ of about 3, conslstent with an attractor of dimension about 2, d,
As in Figs 4d and Bd, p Is shown as a function of the T, (for £=23 and
7=1). Here the correlation coefficient decreases with Increasing prediction
interval, in the manner characteristic of chaotic dynamics generated by a
some low-dimensional attractor, That p is about 50% at best, however,
indicates that roughly half the variance in the time series comes from
additive nolse, The dynamics of this system therefore seem to be intermedi-
ate between those of measles (for which Fig, 4¢ indicates deterministically
chaotic dynamics) and chickenpox (for which Fig, 5d Indicates purely additive
noise superimposed on a seasonal cycle),



Measles), with the fluctuations being additive noise (in contrast
10 measles, for which the fluctuations derive mainly from the
Ynamics).

The contrast between measles and chickenpox can be
explained on biological grounds®', Measles has a fairly high
‘basic reproductive rate’ (R, = 10-20), and, after a brief interval
of infectiousness, recovered individuals are immune and unin-
f_L‘Ctious for life; these conditions tend to produce long-lasting
‘interepidemic’ oscillations, with a period of about 2 years, even
in the simplest models®, This, in combination with seasonal
patterns, makes it plausible that measles has complex dynamics.
Chickenpox is less *highly reproductive’ (with R, values of about
8 to 10), and may recrudesce as shingles in later life; this makes
for an infection less prone to show periodicities other than basic
seasonal ones associated with schools opening and closing, and
therefore indicates seasonal cycles with additive noise. Further-
more, reporting was compulsory for measles but not for chicken-
pox over the time period in question, which itself would be
likely to make sampling error greater for chickenpox. Whatever
the underlying biological explanation, the patterns in Figs 4d
and 5d differ in much the same way as those illustrated in Fig.
2a for the artificially generated time series of Fig. 2, a and b,
Marine plankton. A time series is provided by Allen’s weekly
record of marine planktonic diatoms gathered at Scripps Pier,
San Diego, between 1920 and 1939 (N = 830). With the excep-
tion of the work of Tont?, this collection of information has
been little analysed, and not at all in the light of contemporary
notions about nonlinear dynamics. The data comprise weekly
totals of the numbers of individuals of all diatom species, tallied
in daily seawater samples collected over ~20 years. As for our
analysis of the measles and chickenpox data above, we do not
‘smooth’ the diatom data in any of the usual ways, although we
take first-differences for reasons stated earlier. The resulting
time series is shown in Fig. 6a.

The results of using the first half of the diatom series to predict
the second half are shown in the usual way in Fig. 6b. Figure
6¢c shows p between predicted and observed results looking one
time step ahead (T, =1), as a function of E. The optimum
embedding dimension seems to be about 3. This value for E is
consistent with our independent analysis of the data using the
Grassberger-Procaccia algorithm, which indicates that D=2,
Figure 6d shows p as a function of T, (for E = 3). The consistent

decay in predictive power as one extrapolates further into the
future is consistent with the dynamics of the diatom population
being partly governed by a chaotic attractor. This view is suppor-
ted by the significantly better fit of the nonlinear predictor as
compared with the optimal linear autoregressive model (P <
0.0005). We note, however, that deterministic chaos at best
accounts for about 50% of the variance, with the rest presumably
deriving from additive noise; the relatively low dimension of

_the attractor for diatoms compared with measles makes it plaus-

ible that the noisier fit of predicted weekly fluctuations in
diatoms, versus the predicted monthly fluctuations in measles,
reflects a much higher sampling variance for diatoms than for
reported measles cases.

Conclusion

The forecasting technique discussed here is phenomenological
in that it attempts to assess the qualitative character of a system’s
dynamics—and to make short-range predictions based on that
understanding—without attempting to provide an understand-
ing of the biological or physical mechanisms that ultimately
govern the behaviour of the system. This often contrasts strongly
with the laboratory and field-experiment approaches that are
used to elucidate detailed mechanisms by, for example, many
population biologists. The approach outlined here splits the
time series into two parts, and makes inferences about the
dynamical nature of the system by examining the way in which
p (the correlation coeflicient between predicted and observed
results for the second part of the series) varies with prediction
interval, T,, and embedding dimension, E; given the low
densities of most time series in population biology, we share
Ruelle's® lack of confidence in a direct assessment of the
dimension of any putative attractor by Grassberger-Procaccia
or other algorithms. Qur approach works with artificially gener-
ated time series (for which we know the actual dynamics, and
the underlying mechanisms, by definition), and it seems to give
sensible answers with the observed time series {or measles,
chickenpox and diatoms (deterministic chaos in one case, seas-
onal cycles with additive noise in another, and a mixture of
chaos and additive noise in the third), We hope to see the
approach applied to other examples of noisy time series in
population biology, and in other disciplines in which time series
are typically sparse, 0
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