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This article develops a threshold system for monitoring airline performance. This threshold system divides the sample space into regions
with increasing levels of risk and allows instant assessments of risk level of any observed airline performance. Of particular concern is the
performance with extreme risk. In this article, a multivariate extreme value theory approach is used to establish thresholds for signaling
varying levels of extremeness in the context of simultaneous monitoring of multiple risk measures. The threshold system is justified in terms
of multivariate extreme quantiles, and its sample estimator is shown to be consistent. This threshold system applies to general extreme risk
management. Finally, a simulation and comparison study demonstrates the good performance of the proposed multivariate extreme quantile
estimator. Supplemental materials providing technical details are available online.
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1. INTRODUCTION

The Federal Aviation Administration (FAA) is responsible
for monitoring and regulating aviation safety. The rapid in-
crease in air traffic volume, coupled with aging aircraft, has led
the FAA to increase surveillance and at the same time search
for more effective analyses of its massive streaming surveil-
lance data. A particular need is a monitoring scheme equipped
with an effective threshold system. This system should provide
instant assessments of airline performances of varying degrees
of risk and signal those that appear to be extreme. The goal of
the present work is to develop such a threshold system for the
simultaneous monitoring of multiple risk or performance mea-
sures. More specifically, we apply extreme value theory (EVT)
to derive multivariate extreme quantiles for the formulation of
threshold systems. We also develop inference for these quan-
tiles.

When monitoring a single risk measure, the threshold point is
simply the (1 − p)th quantile of the underlying distribution for
a prescribed exceedance probability p. When p is not too small,
the usual sample quantile provides a satisfactory solution. How-
ever this is not the case when p is very small, where rare events
are of interest to us. EVT is particularly useful for making in-
ferences about rare events. It has been applied successfully to
many real life applications, including calculating heights of sea
dikes in The Netherlands in studies of flood prevention (e.g.
for p = 10−4 per year), estimating the so-called “value-at-risk”
and the related stress testing for equity portfolios, or determin-
ing insurance premiums. Other applications include sports sta-
tistics (e.g., a study of athletic records in Einmahl and Magnus
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2008), meteorology (e.g., a study of precipitation return levels
in Cooley, Naveau, and Nychka 2007), and engineering (e.g.,
a study of pitting corrosion in Fougères, Holm, and Rootzén
2006). Extensive discussions have been provided by Embrechts,
Klüppelberg, and Mikosch (1997), Coles (2001), Beirlant et al.
(2004), and de Haan and Ferreira (2006).

The monitoring of multiple risks presents some new diffi-
culties. The first of these is that there may be different notions
of multivariate quantiles for different monitoring purposes. In
this article we propose defining a (1 − p)th quantile region as
a lower orthant (quadrant in the bivariate case) of the sample
space for which the exceedance probability of any component
variate is no more than p. This proposed quantile region is suit-
able for thresholding in risk assessment in the multivariate set-
ting, because any observation that falls outside the proposed
quantile region would imply that at least one of its component
variates exceeds a certain allowable threshold. To broaden the
applicability of our threshold system, we further allow the mul-
tivariate extreme quantile to take into account different weights
assigned to different component variables. Different weights
may arise in different applications, and they can be used to
reflect the relative importance of the exceedance in individual
component variables. This added flexibility is particularly use-
ful in our application of monitoring airline performance. Note
that once the weights are fixed, our quantile regions are defined
uniquely.

The second difficulty in monitoring multiple risks is that here
the definition of consistency requires a modification of the usual
definition of consistency, because of the very small value of
p (see Remark A.3 and Theorems A.1 and A.2 in the Appen-
dix). In fact, this difficulty already occurs in the univariate case.
When p is extremely small, we provide an estimator for the pro-
posed quantile region and show its consistency.

The article is organized as follows. In the remaining part of
Section 1 we describe the application to aviation safety and the
related data. In Section 2 we briefly review EVT in the univari-
ate setting and discuss estimators for extreme quantiles. In Sec-
tion 3 we review the relevant EVT in the multivariate setting,
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propose a definition for multivariate extreme quantiles, and pro-
vide corresponding estimators. We also show that these estima-
tors are consistent. In Section 4 we apply the proposed notions
of extreme quantiles to establish a threshold system for mon-
itoring two aviation performance measures. Specifically, this
threshold system divides the sample space into regions with in-
creasing levels of risk. In Section 5 we present a simulation and
comparison study to demonstrate the good performance of our
approach. We provide consistency theorems and an extension
of the bivariate threshold system to higher dimensions in the
Appendix. The proofs of theorems are available online as sup-
plemental materials.

Although our application here involves aviation risk assess-
ment, the proposed thresholding procedure based on extreme
quantiles should have broad applicability in other fields as well.
One example of this is the development of an alarm system for
signaling events of varying degrees of extremeness when moni-
toring several financial markets or investment assets simultane-
ously.

1.1 Data and Problem Statements

This work is motivated by the need for a threshold system
for flagging events of extreme risk in an aviation monitoring
scheme, which can be useful for regulating agencies, such as
the FAA. The FAA regularly conducts surveillance inspections
on all air carriers and carefully monitors and analyzes the find-
ings. To increase the efficiency of their monitoring scheme, the
FAA hopes to embed a threshold system in the scheme that
can assign appropriate levels of potential risk to inspection out-
comes. In aviation safety analysis, the regions corresponding to
an increasing level of risk generally are termed informational,
expected, advisory, and concern:

• concern (colored red) corresponds to the worst 0.15% of
all possible performances.

• advisory (colored yellow) corresponds to the worst 1% of
all possible performances but not the worst 0.15%.

• informational (colored green) corresponds to the best 5%
of all possible performances.

• expected (colored blue) corresponds to the remainder of
the sample space. It represents observations considered to
meet the FAA’s expectation under normal circumstances.

This threshold system allows the FAA to label the inspection
results in terms of the severity of potential flaws and to quickly
assess the safety performance of each carrier.

Many airline performance measures are considered impor-
tant risk measures in aviation safety. The threshold system de-
veloped in the present work allows for simultaneous monitor-
ing of any number of risk measures. To simplify the exposition,
we focus here on two key airline performance measures: in-
cident rate (IR) and operational unfavorable ratio (OU). The
precise definitions of incident and operation control are avail-
able from the Flight Standards Information Management Sys-
tem at http:// fsims.faa.gov. There an incident is defined as “an
occurrence involving one or more aircraft in which a hazard or
a potential hazard to safety is involved but not classified as an
accident due to the degree of injury and/or extent of damage.”
This definition covers a broad range of events and may include

Figure 1. Scatterplot for air carrier risk measures (IR, OU).

damage to an aircraft (other than an accident) or pilot devia-
tions. The variable IR is the number of incidents normalized by
the fleet size of each air carrier. The variable OU is the number
of operation control violations normalized by the total number
of operations. Examples of operational control include crew as-
signment, load, and flight planning. Obviously, incidents can
affect operation safety and vice versa; thus the variables IR and
OU are not independent of each other.

We focus on a data set collected by the FAA from 10 air carri-
ers of similar service type and fleet size over a 57-month period
from July 1993 to March 1998 (see the scatterplot in Figure 1).
Each data point represents a monthly observation of (IR, OU)
from a given carrier. Both IR and OU are measures of noncon-
formance, for which a higher value is associated with a more
severe potential flaw. Note that the results from autocorrelation
plots and Durbin–Watson tests on all air carriers do not indicate
any time-dependence of the data. This observation, along with
the fact that the carriers are of similar fleet size and service type,
allows us to consider the data set as a bivariate iid sample.

The specific task before us is to use our multivariate extreme
quantile approach to identify the different potential risk regions
desired by the FAA. In our approach, the concern region com-
prises the points lying outside the (1 − 0.0015)th quantile re-
gion, and the advisory region comprises the points lying outside
the (1 − 0.01)th quantile region but inside the (1 − 0.0015)th
quantile region. There are a total of 570 data points. Note that
570 × 0.0015 = 0.855, which implies that on the average there
is less than one observation in the concern region. Even for the
concern and advisory regions combined, the possible expected
number of observations is still quite small (570 × 0.01 = 5.7).
This setting of very few or no occurrences is ideal for applica-
tions of multivariate EVT.

Another aviation application, which we do not pursue in
depth in this article, is to choose for an airport runway a thresh-
old point beyond which runway crossings could be allowed.
Due to the recent explosive growth in air traffic, this shortage
of runway capacity has become the main cause of delays and

http://fsims.faa.gov
http://fsims.faa.gov
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congestion. While the construction of additional runways is be-
ing sought, the FAA may consider implementing the so-called
“land and hold-short operations” (LAHSO) on aircraft landings
to help ease air traffic. LAHSO would require that all aircraft
landings be completed before a predetermined hold-short point
on the runway. The advantage of implementing LAHSO is to
free up a certain portion of the runway to allow for other usage
and in turn reduce air traffic congestion. To establish an accept-
able land-and-hold-short point on the runway, safety require-
ments mandate that the portion of the runway from its touch-
down to the hold-short point constitute an available safe land-
ing distance. For example, this may require that the probability
that the full stop of a landing aircraft occurs beyond the hold-
short point be no more than 1 in 10 million. This amounts to
determining the (1 − 0.0000001)th quantile of the distribution
of landing distance for all aircraft. Usually a data set comprises
the landing distances of about 10,000 aircraft on a given airport
runway. Because 10,000 × 0.0000001 = 0.001 # 1, this is a
setting with no occurrence. The univariate extreme quantile es-
timator discussed later would be well suited for this application.

2. MONITORING ONE RISK: UNIVARIATE
EXTREME QUANTILE

Assume that X1, . . . ,Xn is a random sample from an un-
known univariate continuous distribution function, F. Let
X1:n ≤ X2:n ≤ · · · ≤ Xn:n denote the corresponding order sta-
tistics. Our task is to obtain the (1 − p)th quantile of F, that is,
xp such that

xp = inf{x ∈ R : P(X1 > x) ≤ p}.
In general, the nonparametric estimator of xp is simply the
corresponding sample quantile, that is, x̃p = inf{x ∈ R :∑n

i=1 I{Xi>x}/n ≤ p}. However if p is small, then the sample
may contain insufficient observations to make this estimate use-
ful in practice. For example, with a sample of 1,000 observa-
tions, the (1 − 0.0001)th quantile would not be well estimated
by the foregoing formula. As we discuss later, EVT is useful for
the inference related to such extreme quantiles of a probability
distribution.

Statistical inference generally involves the central limit the-
orem, which characterizes the limiting distribution of the sam-
ple mean. In EVT, our focus is on the sample maximum rather
than the mean. Specifically, we search for a sequence of pos-
itive numbers {an;n ≥ 1} and another sequence of numbers
{bn;n ≥ 1}, such that

lim
n→∞ P

(
Xn:n − bn

an
≤ x

)
= G(x) (2.1)

for all x ∈ R at which the limiting distribution function G is
continuous. Here G is a nondegenerate distribution function.
If such sequences an and bn exist, then F is said to be in the
domain of attraction of G, denoted by F ∈ D(G). If F ∈ D(G),
then much of the tail behavior of F can be characterized by G.
Fisher and Tippett (1928) and Gnedenko (1943) have shown
that G (apart from a location and scale constant) is of the form

G(x) = Gγ (x) = exp
(
−(1 + γ x)−1/γ

)
,

1 + γ x > 0, γ ∈ R (2.2)

[by convention, (1 + γ x)−1/γ = e−x for γ = 0]. These distrib-
utions are referred to as extreme value distributions.

The parameter γ , the extreme value index, characterizes the
tail behavior of F in terms of its degree of heaviness; more
specifically:

(i) γ > 0 (G is referred to as a Fréchet distribution) )⇒ F
has a heavy tail

(ii) γ < 0 (G is referred to as a reverse Weibull distribution)
)⇒ F has a finite endpoint

(iii) γ = 0 (G is referred to as a Gumbel distribution) )⇒ F
has a light tail.

For example, a Cauchy distribution is a heavy-tailed distrib-
ution with corresponding γ = 1, a uniform distribution on the
interval [0,1] has a finite endpoint with corresponding γ = −1,
and a normal distribution is attracted by the Gumbel distribu-
tion with corresponding γ = 0.

Clearly, the parameter γ determines G. To estimate γ , we
define

M(j)
n = 1

k

k−1∑

i=0

(log Xn−i:n − log Xn−k:n)j,

1 < k < n, j ∈ N, (2.3)

γ̂ +
n = M(1)

n ,
(2.4)

γ̂ −
n = 1 − 1

2

(
1 − (M(1)

n )2

M(2)
n

)−1

.

The estimator γ̂ +
n , proposed by Hill (1975), is generally re-

ferred to as the Hill estimator. It has been shown that γ̂ +
n is

consistent and, under additional assumptions, asymptotically
normal when γ > 0. Dekkers, Einmahl, and de Haan (1989)
constructed the moment estimator

γ̂n = γ̂ +
n + γ̂ −

n , (2.5)

and showed that it is consistent and asymptotically normal for
a general γ ∈ R. Other generalizations of the Hill estimator for
general γ include those of Smith (1987) and Beirlant, Vynckier,
and Teugels (1996).

We now return to the task of using EVT to estimate an ex-
treme quantile. We first observe that (2.1) implies (by taking
logarithms)

lim
t→∞ t(1 − F(atx + bt)) = − log Gγ (x)

= (1 + γ x)−1/γ , Gγ (x) > 0,

where t now runs through R+, and at and bt are defined by
interpolation. Setting y = atx + bt, we obtain heuristically

1 − F(y) ≈ 1
t

(
1 + γ

y − bt

at

)−1/γ

.

Because the (1 − p)th quantile of F, xp, satisfies 1 − F(xp) = p,
the foregoing approximation yields, with t = n

k ,

xp ≈
( k

np

)γ − 1

γ
an/k + bn/k. (2.6)
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The normalizing sequences an/k and bn/k can be estimated by

b̂n/k = Xn−k:n and
(2.7)

ân/k = Xn−k:nM(1)
n (1 − γ̂ −

n ).

Plugging in (2.6) the foregoing estimators as well as the esti-
mator from (2.5), we obtain the following estimator for xp:

x̂p =
( k

np

)γ̂n − 1

γ̂n
ân/k + b̂n/k. (2.8)

Because the expressions (2.3)–(2.8) all involve k, the properties
of the estimators x̂p clearly depend on the choice of k. The esti-
mator in (2.8) was presented by Dekkers, Einmahl, and de Haan
(1989), but with no discussion on the choice of k.

2.1 The Choice of k

The value k can be viewed as the effective sample size for
tail extrapolation. If k is too small, then the estimator tends to
have a large variance, whereas if k is too large, then the bias
tends to dominate. The importance of choosing a suitable k here
can be easily illustrated using the LAHSO project as an exam-
ple. The larger landing distance values in the data set should be
more relevant for the inference for the extreme landing pattern
and thus have a greater effect on the determination of the hold-
short point. The question then is how many (namely k) such
large landing distances should be included when determining
the hold-short point.

One commonly used heuristic approach for choosing k in
practice is to plot the estimated quantile x̂p versus k, and then
choose a k that corresponds to the first stable part of the plot.
This visual approach is simple but lacks precise statistical jus-
tification. Moreover, it may not always be easy to identify the
first stable part of the plot.

To overcome this problem, we look for the theoretically op-
timal k by minimizing the mean squared error (MSE) of x̂p,
defined as

MSE(n, k) = E(x̂p − xp)
2. (2.9)

However this optimal choice of k clearly depends on the un-
known xp. Thus we need to consider a data-driven approach
to determining k, which hopefully is asymptotically equivalent
(in probability) to the optimal one. Several methods for find-
ing such a k have been proposed in the literature. Gomes and
Oliveira (2001) conducted a detailed investigation and compari-
son of these methods and found the double-bootstrap technique
introduced by Danielsson et al. (2001) for estimating a posi-
tive extreme value index to be the “most appealing” approach.
Ferreira, de Haan, and Peng (2003) adapted this technique to
the case of extreme quantile estimation. Here we review this
latter procedure and use it in our approach.

The objective MSE in (2.9) is replaced by a somewhat sim-
ilar expression that contains no unknown parameters and thus
can be computed directly from the given data. This analog is
obtained by replacing xp with an estimator differing from that
in (2.8). Following this idea, Ferreira, de Haan, and Peng (2003)

defined, for 1 < k < n, γ̂n,1(k) = γ̂n and ân/k,1 = ân/k and pro-
posed two alternative estimators, γ̂n,2(k) and ân/k,2, which in
turn yield the following two estimators for xp:

x̂n,j(k) = Xn−k:n + ân/k,j

( k
np

)γ̂n,j(k) − 1

γ̂n,j(k)
, j = 1,2. (2.10)

Note that x̂n,1(k) here is the same as x̂p in (2.8) and that x̂n,2(k)
is an alternative estimator for xp. Now we replace MSE(n, k) in
(2.9) with

E(x̂n,1(k) − x̂n,2(k))2. (2.11)

The double-bootstrap procedure can be used to determine the
optimal k in an asymptotic version of (2.9) as follows:

1. Randomly draw a bootstrap sample {X∗
i ,1 ≤ i ≤ n1} from

{Xi,1 ≤ i ≤ n} with n1 < n.
2. Select {X∗

i ,1 ≤ i ≤ n2}, a subset of size n2 from the boot-
strap sample in step 1, where n2 = n2

1/n < n1.
3. Compute x̂n1,1(k), x̂n1,2(k), x̂n2,1(k), and x̂n2,2(k) in (2.10)

based on the two bootstrap samples obtained in steps 1
and 2.

4. Repeat steps 1–3 independently, sufficiently many (say B)
times. Calculate

M̂SE
∗
(ni, k) = 1

B

B∑

j=1

(
x̂∗(j)

ni,1(k) − x̂∗(j)
ni,2(k)

)2
,

i = 1,2, (2.12)

where x̂∗(j)
ni,1(k) and x̂∗(j)

ni,2(k) are x̂ni,1(k) and x̂ni,2(k) from
the jth bootstrap sample.

5. Find a k̂i that minimizes M̂SE
∗
(ni, k), i = 1,2 (k̂i is away

from 1 or ni).
6. The optimal choice of k in the estimator x̂n,1(k) is then

given by

k̂0 = k̂2
1

k̂2
g(γ̂n, ρ̂), (2.13)

where, if γ̂n > 0,

g(γ̂n, ρ̂) =
(

ρ̂2

(1 − ρ̂)2

)1/(1−2ρ̂)

. (2.14)

Ferreira, de Haan, and Peng (2003) have provided more
background on formulas (2.13) and (2.14) and the expres-
sion for g in the case where γ̂n ≤ 0.

To proceed with the case of γ̂n > 0, we use the estima-
tor ρ̂ = ρ̂(k) of Fraga Alves, de Haan, and Lin (2003). We
plot ρ̂ against k and choose the ρ̂-value of the first stable
part of the plot. Generally, we require that the correspond-
ing k values be sufficiently large.

Once k is chosen following the foregoing procedure, the esti-
mate for the extreme quantile x̂p in (2.8) can be obtained imme-
diately.
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3. MONITORING MULTIPLE DEPENDENT RISKS:
MULTIVARIATE EXTREME QUANTILE

We now consider an application of EVT in the multivariate
case to establish a threshold system for the simultaneous mon-
itoring of multiple measurements that are possibly dependent.
To streamline the exposition, here we present only the argu-
ments for the two-dimensional case. We defer the treatment of
the general multidimensional case to Appendix A.2.

Let (X1,Y1), . . . , (Xn,Yn) be a random sample from an un-
known continuous distribution function F, with the correspond-
ing probability measure P. Write F1(x) = F(x,∞) and F2(y) =
F(∞, y) the marginal distributions of F. Let X1:n ≤ X2:n ≤ · · · ≤
Xn:n and Y1:n ≤ Y2:n ≤ · · · ≤ Yn:n denote the order statistics
of X1, . . . ,Xn and Y1, . . . ,Yn. Similar to the univariate EVT,
here F is assumed to belong to the domain of attraction of
an extreme value distribution; in other words, there exist se-
quences {a1n > 0;n ≥ 1}, {b1n;n ≥ 1}, {a2n > 0;n ≥ 1}, and
{b2n;n ≥ 1} such that

(
Xn:n − b1n

a1n
,

Yn:n − b2n

a2n

)
d−→ G(x, y), (3.1)

where G has nondegenerate marginal distributions. Clearly, this
implies that G(x,∞) and G(∞, y) are univariate extreme value
distributions. Therefore, with properly chosen sequences, we
can obtain that for some γ1, γ2 ∈ R, where 1 + γ1x > 0 and
1 + γ2y > 0,

G1(x) := G(x,∞) = exp
(
−(1 + γ1x)−1/γ1

)
and

G2(y) := G(∞, y) = exp
(
−(1 + γ2y)−1/γ2

)
.

Along with the quantiles from the two marginal distribu-
tions, the tail dependence structure between the two compo-
nent variables is also essential for deriving extreme quantiles
in the bivariate case. We briefly describe this tail dependence
structure. Let C denote the distribution function of the pair
(1 − F1(X1),1 − F2(Y1)). Note that

lim
t↓0

1
t

C(tx, ty) = x + y − l(x, y), (3.2)

in view of (3.1), where

l(x, y) = − log G
(

x−γ1 − 1
γ1

,
y−γ2 − 1

γ2

)
.

A bivariate probability distribution function F is said to have a
tail dependence function l if (3.2) holds for x, y ≥ 0. Two key
properties of l are as follows:

(i) l(tx, ty) = tl(x, y), for all t, x, y ≥ 0 (often referred to as
the homogeneity property)

(ii) max(x, y) ≤ l(x, y) ≤ x + y, where the equality on the
left side is attained when X1 and Y1 are completely positive
dependent in the tail, and the equality on the right hand side
is attained when X1 and Y1 are independent in the tail (often
referred to as asymptotic independence).

For a more thorough discussion on l and general multivariate
EVT, see de Haan and Ferreira (2006), part II.

3.1 Defining Multivariate Extreme Quantiles for
Simultaneous Thresholding

In simultaneous monitoring of multiple measurements, our
task is to identify proper threshold points for which the ex-
ceedance probabilities are within certain predetermined values.
For monitoring bivariate measurements (X,Y) from F, our task
is to find threshold points x and y such that for a predetermined
value p,

P(X > x or Y > y) = p. (3.3)

Obviously, there are infinitely many choices of (x, y) that sat-
isfy this condition. Different applications may also impose ad-
ditional constraints on condition (3.3). One possible constraint,
which is also required in our application in Section 4, is that

cP(X > x) = P(Y > y), (3.4)

where the positive constant c represents the different weights
assigned to the two marginal tail probabilities. The value c gen-
erally is chosen in advance to satisfy some practical constraints
on the relative importance attached to the marginal variables.
For example, c = 1 implies that exceedances of either variable
are considered equally important. If c is chosen to be >1 (as is
the case in our application in Sec. 4), then the exceedance in Y
is considered more important or critical.

Henceforth we call the region (−∞, x] × (−∞, y], where x
and y satisfy (3.3) and (3.4), as the (1−p)th quantile region, and
refer to (x, y) as its corresponding threshold point. Whenever
there is no possibility of confusion, we use the term (1 − p)th
quantile for both the region and its threshold point.

Note that for a very small p, (3.2) implies that

p = P(X > x or Y > y) = 1 − F(x, y)

= 1 − F1(x) + 1 − F2(y) − C(1 − F1(x),1 − F2(y))

≈ l(1 − F1(x),1 − F2(y)) = l(p1,p2), (3.5)

where p1 = 1 − F1(x) = P(X > x) and p2 = 1 − F2(y) = P(Y >

y). Because cp1 = p2 [see (3.4)], p ≈ l(p1, cp1) = p1l(1, c), and
thus

p1 ≈ p
l(1, c)

, p2 ≈ cp
l(1, c)

. (3.6)

The foregoing discussion demonstrates that estimating a bivari-
ate extreme quantile essentially involves two steps, estimating
the marginal quantiles and then estimating l(1, c). The first step
can be addressed in the same way as in the univariate case dis-
cussed in Section 2, although we now need to estimate both p1
and p2. We address the second step next.

3.2 Estimating the Tail Dependence Function and
the Choice of k

Based on the definition of l(x, y) in (3.2), Huang (1992) pro-
posed the following empirical tail dependence function of F
(see also Einmahl, de Haan, and Li 2006):

l̂n,k(x, y) = k−1
n∑

j=1

I[Xj≥Xn−[kx]+1:n or Yj≥Yn−[ky]+1:n]. (3.7)
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This function has been shown to be consistent and asymptoti-
cally normal. Following Peng (1998, sec. 5.4), we define and
focus on the alternative estimator of l(x, y),

l̃n,k(x, y) = l̂n,k(2x,2y) − l̂n,k(x, y), (3.8)

because it can be adapted for bootstrap procedures. Obviously,
the homogeneity property of l implies that l̃n,k(x, y) is a con-
sistent estimator of l(x, y). As in the univariate extreme quan-
tile estimation discussed in Section 2, we find the optimal k by
minimizing the MSE of l̃n,k(x, y), that is,

MSE(n, k) = E(l̃n,k(x, y) − l(x, y))2. (3.9)

Clearly, here the optimal choice of k depends on the unknown
l(x, y). Mimicking the approach to deriving univariate extreme
quantiles, we may circumvent this problem by replacing (3.9)
with an auxiliary statistic. Here Peng (1998) considered replac-
ing (3.9) by

E(l̃n,k(x, y) − l̂n,k(x, y))2, (3.10)

and then derived a double bootstrap procedure to find the op-
timal k for estimating l(x, y). In our setting, we consider x = 1
and y = c. This bootstrap procedure is similar to that presented
in Section 2 for estimating extreme quantiles. We omit the
details except to mention that step 6 there yields the optimal
choice of k, similar to (2.13),

k̂0 = k̂2
1

k̂2
g(ρ̂), (3.11)

where

g(ρ̂) =
(

2(21+ρ̂ − 1)2

(21+ρ̂ − 2)2

)1/(2ρ̂+1)

(see Peng 1998). Here ρ̂ can be derived following the approach
of Fraga Alves, de Haan, and Lin (2003, p. 156), as

ρ̂ = 1
log 2

(
log(l̂n,k(1,1) − 1/2l̂n,k(2,2))

− log(2l̂n,k(1/2,1/2) − l̂n,k(1,1))
)
.

Finally, we are ready to describe the procedure for estimating
the extreme quantile (x, y), such that P(X > x or Y > y) = p and
cp1 = p2. The steps are as follows:

Step a. Obtain the estimate l̃(1, c) [as given in (3.8)] for
l(1, c) by using the optimal k obtained from the bootstrap
procedure in (3.11).

Step b. Estimate the marginal tail probabilities p1 and p2,
following (3.6), by

p̂1 = p

l̃(1, c)
, p̂2 = cp

l̃(1, c)
.

Step c. Apply p̂1 and p̂2 to (2.8) to obtain the corresponding
estimates for the marginal quantiles x̂p̂1 and ŷp̂2 . Here the
optimal k should be the one in (2.13), derived from the
bootstrap procedure given in Section 2.

The (x̂p̂1 , ŷp̂2) thus obtained is our proposed estimator for the
quantile (x, y).

3.3 Consistency

Let Qp = (−∞, x] × (−∞, y] such that F(x, y) = 1 − p and
c(1 − F1(x)) = 1 − F2(y) for some predetermined value c ∈
(0,∞). Denote the estimator of Qp by Q̂p, that is,

Q̂p =
(
−∞, x̂p̂1

]
×

(
−∞, ŷp̂2

]
,

where x̂p̂1 and ŷp̂2 are the (1 − p̂1)th and (1 − p̂2)th quantile
estimators of F1 and F2 given in step c, with p̂1 = p

l̃(1,c)
and

p̂2 = cp̂1 = cp
l̃(1,c)

. Here the optimal k is determined separately
in estimating l(1, c), xp̂1 or yp̂2 . Henceforth, we denote these by
k, k1, and k2.

Before establishing the consistency of (x̂p̂1 , ŷp̂2), we note that
to have a useful asymptotic model for our extreme quantile, our
p should depend on n and should tend to 0 as n → ∞. This as-
sumption is meaningful, because it reflects the fact that we are
working on the boundary of the sample. Subsequently, this sug-
gests that an appropriate definition of consistency of extreme
quantiles should be in terms of the ratio tending to 1, rather
than the difference tending to 0.

Finally, we are ready to state the consistency of our estimator.
Under proper conditions, including np = O(1), k

n , k1
n , k2

n → 0,
k, k1, k2 → ∞, as n → ∞, we have

P(Q̂p.Qp)

p
p−→ 0,

where . denotes the symmetric difference. This immediately
implies that

1 − F(x̂p̂1 , ŷp̂2)

p
p−→ 1.

More technical details are provided in the Appendix.

4. APPLICATION: SIMULTANEOUS THRESHOLDING
OF TWO RISKS

We now apply the threshold system derived in Section 3 to
carry out the project described in Section 1.1. Recall that our
threshold system should divide the sample space into four re-
gions with increasing risk levels: informational, expected, ad-
visory, concern, with the performance measures incident rate
(IR) and operational unfavorable ratio (OU) as the monitoring
subjects. We have a total of 570 data points from 10 air carriers;
each point represents a monthly observation of (IR, OU) from a
given carrier, as shown in Figure 1. In the aviation industry, the
OU is considered “twice as important” as the IR.

We first discuss the construction of the concern and advisory
regions. We construct the informational region (and thus also
the expected region) at the end of this section using empirical
process theory, because on average sufficiently many (570 ×
0.05 = 28.5) observations fall in that region.

4.1 Concern and Advisory Regions: Extreme Quantiles

Because higher observed values imply worse performance,
we interpret a multivariate performance measure as being
flawed or at risk if any of its component measures exceeds
a prescribed threshold. As discussed in Section 3, this in-
terpretation gives rise to the quantile regions with the form
(−∞, x] × (−∞, y] such that F(x, y) = 1 − p. The constraint
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that OU is twice as important as IR can be translated into the
expression

2(1 − F1(x)) = 1 − F2(y), i.e., 2p1 = p2,

if we denote IR as X and OU as Y in the setting for (3.4). This
setting exactly fits the framework discussed in Section 3 with
c = 2. Our task now is to simply find x and y that can satisfy
the conditions 1 −F(x, y) = p and 2(1−F1(x)) = 1−F2(y) for
p = 0.0015 for the concern region and for p = 0.01 for advisory
region.

Before attempting to solve the foregoing problem, we first
need to verify that the assumptions for bivariate EVT hold for
the data set. In other words, we need to check whether F is in
the domain of attraction of an extreme value distribution. To be-
gin, we use the tests proposed by Dietrich, de Haan, and Hüsler
(2002) and Drees, de Haan, and Li (2006) to check whether
each of the two marginal distributions F1 and F2 is in the do-
main of attraction of a univariate extreme value distribution.
Both tests indicate that this is in fact so. Next, we check whether
the dependence structure of F ensures that F is in the domain of
attraction. To this end, we apply the test proposed by Einmahl,
de Haan, and Li (2006) to our data. Again, we find that F satis-
fies the assumption. Finally, we apply the procedure outlined in
Section 3 to our data. To streamline the exposition, here we de-
scribe each step in the procedure only for p = 0.0015; the same
procedure applies to p = 0.01.

We begin by estimating the tail dependence function l(1,2).
We first apply the bootstrap procedure described in Section 3.2
to obtain the optimal k for estimating l(1,2). We choose n1 =
n0.95 and B = 10,000 (see Gomes and Oliveira 2001 for the ra-
tionale behind this choice). To avoid the few nonconvergence
situations, we use a multistage bootstrap procedure, in which
a bootstrap sample of size m = 200 is drawn for each of the
50 (= r) replications. With this multistage bootstrap procedure,
we obtain 50 pairs of k̂1 and k̂2 by minimizing the bootstrap
versions of (3.10). The bootstrap procedure is known to work
well only if k̂2 ≤ k̂1 ≤ n1

n2
k̂2. Only 37 pairs satisfy this constraint

and are retained. Then we only need determine ρ̂ [see (3.11)]
to obtain the optimal k̂0. Based on the plot of ρ̂ versus k shown
in Figure 2, we choose 1.635 (indicated by the horizontal line
in the plot) as our final ρ̂. Using this ρ̂, together with the 37
pairs of k̂1 and k̂2, we obtain 37 approximate optimal k for esti-
mating l̃(1,2). Plugging these choices of k into (3.8), we get 37
estimates of l̃(1,2). Our final choice of l̃(1,2) is the average of
these 37 estimates, 2.702. Figure 3 plots l̃(1,2) versus k with
the horizontal line at 2.702.

Next, we plug the final estimate l̃(1,2) = 2.702 into (3.6)
to obtain the estimates for the two marginal tail probabilities
p̂1 = 0.00056 (= 0.0015/2.702) and p̂2 = 0.00111 (= 2p̂1). Af-
ter determining these two tail probabilities, we follow the proce-
dure described in Section 2 to obtain the two corresponding uni-
variate extreme quantiles and then the bivariate (1 − 0.0015)th
quantile.

To proceed, we examine Figure 4, which plots the estimated
γ for both X and Y by different choices of k. The plots clearly
show that both marginal distributions have positive γ . This ob-
servation allows us to apply (2.14) to choose the optimal k be-
low.

Figure 2. ρ̂ versus k. (The horizontal line corresponds to
ρ̂ = 1.635.)

For each marginal, we apply the (multistage) bootstrap
procedure outlined in Section 2 to determine the optimal k
for the univariate quantile estimate. Again we chose n1 =
n0.95 and B = 10,000 (m = 200 and r = 50). In each of
the 50 replications, we need to find the k̂i that minimizes
M̂SE

∗
(ni, k) = 1

m
∑m

j=1(x̂
∗(j)
ni,1(k) − x̂∗(j)

ni,2(k))
2, i = 1,2. Figure 5

plots M̂SE
∗
(ni, k) versus k from one replication based on OU

data, for i = 1,2. Both plots show that M̂SE
∗ achieves its global

minimum at either end of the range of k. This means k̂i is ei-
ther very small or very large (close to ni). Because neither of
these is a practical estimate, we add some constraints to the
range of the possible values of ki by focusing only on those

Figure 3. l̃(1,2) versus k. [The horizontal line corresponds to
l̃(1,2) = 2.702.]
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Figure 4. γ̂ versus k.

ki’s that yield a local minimum instead. Under this constraint,
we find local minimums in the ranges [20,240] in the upper
panel of Figure 5 and [10,175] in the lower panel. Thus we
obtain k̂i, i = 1,2, by minimizing M̂SE

∗
(ni, k) in those inter-

vals. We apply the same procedure to obtain k̂i, i = 1,2, for IR.
Under the constraint k̂2 ≤ k̂1 ≤ n1

n2
k̂2, we can keep only 22 pairs

of (k̂1, k̂2) for IR (vs 32 pairs for OU). We use these pairs to-
gether with ρ̂ [obtained from (2.14)] to derive k̂0 in (2.13). We
plot ρ̂ versus k for both IR and OU in Figure 6. In this fig-
ure, the horizontal lines indicate the final choices of ρ̂: −0.356
for IR and −0.456 for OU. After plugging these values, along
with the choices of (k̂1, k̂2), into (2.13) and then into (2.8), we
obtain 22 estimates for the marginal quantile of IR with an av-
erage of 0.064 and 32 estimates for the marginal quantile of
OU with an average 0.252. Thus (0.064, 0.252) is our estimate
for the bivariate (1 − 0.0015)th quantile. Figure 7 plots the es-

Figure 5. M̂SE∗
(ni, k) versus k. (The upper plot is for bootstrap

sample size n1; the lower plot, for bootstrap sample size n2.)

Figure 6. ρ̂ versus k for IR and OU. (The horizontal lines indicate
ρ̂ = −0.356 and −0.456.)

timated marginal quantiles versus different choices of k. The
horizontal lines correspond to the final estimates, 0.064 and
0.252.

Following this same procedure, we obtain (0.036, 0.150) as
an estimate of the bivariate (1 − 0.01)th quantile.

4.2 Informational Region: Nonextreme Quantile

Finally, we discuss the informational region, which con-
stitutes the best 5% of all performances. Because on aver-
age this region contains sufficient observations, we can use
the usual empirical process approach instead of EVT. Obvi-
ously, both components in this region should assume low val-
ues, and the region is of the form (−∞, x] × (−∞, y], with
F(x, y) = p̃. Let F−1

1 and F−1
2 denote the left-continuous quan-
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Figure 7. Extreme quantile estimates for IR and OU versus k. The
horizontal lines correspond to the final estimates, 0.064 and 0.252.

tile functions corresponding to F1 and F2. The constraint that
OU is “twice as important” as IR is then translated into x =
F−1

1 (2t), y = F−1
2 (t) for some t ∈ (0,1). For a given p̃, let t0

satisfy F(F−1
1 (2t0),F−1

2 (t0)) = p̃. We can express the informa-
tional region as

Op̃ = (−∞,F−1
1 (2t0)] × (−∞,F−1

2 (t0)],
and estimate it by

Ôp̃ =
(
−∞, 1

2 (X2nt̂:n + X2nt̂+1:n)
]
×

(
−∞, 1

2 (Ynt̂:n + Ynt̂+1:n)
]
,

where t̂ is the smallest t such that nt is an integer and∑n
i=1 I[Xi≤X2nt:n;Yi≤Ynt:n] ≥ np̃. Applying this to our data with

p̃ = 0.05, we get the values (0.0032, 0.0238), corresponding to
IR and OU.

Following an empirical process approach, we immediately
obtain the following consistency result for any continuous F:

P(Ôp̃.Op̃)
p→ 0.

4.3 Final Solution

The estimated threshold regions derived in Sections 4.1
and 4.2 are shown in Figure 8, in which both coordinates are
presented on a logarithmic scale for better viewing. In terms of
the original scale, the right upper corners of the three nested rec-
tangles correspond to the estimated quantiles (0.0032, 0.0238),
(0.036, 0.150), and (0.064, 0.252). The upper right region cor-
responds to concern, the next upper right region corresponds to
advisory, the lowest rectangle corresponds to the informational
region, and the region between informational and advisory cor-
responds to expected. This is a case study of EVT in action.

5. SIMULATION AND COMPARISON STUDY

Finally, we conduct a simulation to study the finite-sample
performance of our approach. We take n = 1,000, c = 2 (as in
the case of our application), and p = 0.001 and 0.003. For each
case we run 2,000 simulations. The data are simulated from two

Figure 8. Threshold system: the four designated regions (scatter-
plot on the log scale).

distributions. The first is a Cauchy distribution restricted to only
the first quadrant, with density (2/π)(1+x2 +y2)−3/2, x, y > 0.

The corresponding tail dependence function satisfies l(1,2) =√
5. The other distribution is the bivariate Gumbel logistic

model with distribution function exp(−(xr + yr)1/r), x, y >

0; r ≥ 1. To make this distribution sufficiently resemble our
FAA data in the application, we choose r so that l(1,2) = 2.702
and transform both marginals to Pareto distributions with the
extreme value index 0.25 (see Figure 4), for which the marginal
distribution functions become 1 − 1/x4, x ≥ 1.

We compare our estimator with the nonparametric estimator
(NP) based on the usual marginal order statistics. The compar-
ison is based on the MSE

E
(

1 − P(Q̂p)

p
− 1

)2

.

The simulation results, reported in Table 1, clearly show that
our estimator consistently outperforms the NP estimator. Note
that the improvement from using our EVT approach is substan-
tially greater in the case with p = 0.001 than in the case with
p = 0.003. This is as expected, because a smaller p value makes
it more difficult to extrapolate the tail behavior, which is ex-
actly the strong point of EVT. Note also that the mean squared
errors of our estimator are quite good given the difficult nature
of the estimation problem. We stress that for either p = 0.001
or p = 0.003 we are essentially dealing with multivariate quan-
tiles on the boundary of the sample. The estimation of these

Table 1. Empirical MSE for the EVT and NP approaches under
Cauchy and Gumbel distributions

p = 0.001 p = 0.003

Method Cauchy Gumbel Cauchy Gumbel

EVT 0.47 0.64 0.24 0.28
NP 2.10 2.47 0.34 0.32
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extreme quantiles is statistically more difficult than the estima-
tion of the mean, and thus the same level of accuracy should not
be expected. Overall, our approach performs well.

APPENDIX

A.1 Consistency of the Quantile Estimators

We show that the proposed extreme quantile estimator (x̂p̂1
, ŷp̂2

)

achieves the desired probability level and satisfies the constraint (3.4),
asymptotically. Before we proceed with the bivariate case, we first
prove some asymptotic results in the univariate case. Let F̄ = 1 − F
and qγ (x) =

∫ x
1 sγ−1 log s ds. Also recall the definition of x̂p in (2.8).

(To streamline the presentation, we use the same notation p to indicate
the tail probability in both univariate and multivariate settings. When
needed, an index j will be added to indicate the jth marginal.)

Theorem A.1. Assume the following:

(a) np = O(1).
(b) k

n → 0, k → ∞.
(c) qγ (dn)/(dγ

n
√

k) → 0, with dn = k
np (hence γ > − 1

2 ).
(d) F satisfies the following second-order refinement of the do-

main of attraction condition: There exists a function A with
limt→∞ A(t) = 0, constant sign near ∞, and

lim
t→∞

tF̄(atx + bt) − (1 + γ x)−1/γ

A(t)

= (1 + γ x)−1−1/γ Hγ,η
(
(1 + γ x)−1/γ )

,

for all x with 1 + γ x > 0 and some η < 0, where Hγ,η(x) =
1
η ( xγ+η−1

γ+η − xγ −1
γ ).

(e) An =
√

k(
ân/k
an/k

−1) = Op(1), Bn =
√

k(
b̂n/k−bn/k

an/k
) = Op(1), and

%n =
√

k(γ̂n − γ ) = Op(1).

Then we have

F̄(x̂p)

p
p−→ 1. (A.1)

Remark A.1. In fact, Theorem A.1 holds for any estimators of
an/k,bn/k , and γ as long as the Op(1) requirements in (e) are fulfilled.

Remark A.2. If x̂p̂ is calculated from (2.8) based on a random p̂,
such that p̂/p

p−→ c0 holds for some c0 ∈ (0,∞), then, under our as-
sumptions on p, it also can be easily shown that F̄(x̂p̂)/p̂

p−→ 1.

The next theorem is an extension of Theorem A.1 to a bivariate
setting.

Theorem A.2. Assume np = O(1), k
n , k1

n , k2
n → 0, k, k1, k2 → ∞.

Also assume that F is in the domain of attraction of a bivariate ex-
treme distribution, and that both of the marginal distributions F1 and
F2 satisfy the conditions (c)–(e) listed in Theorem A.1. Then we have

P(Q̂p.Qp)

p
p−→ 0.

A somewhat related work is the study of multivariate quantile
curves of de Haan and Huang (1995). Another approach, considered
by Joe, Smith, and Weissman (1992), modeled parametrically the tail
dependence function.

Remark A.3. Observe that np = O(1) and thus p → 0 (very fast).
This implies that the usual consistency statement P(Q̂p.Qp)

p−→ 0
is inappropriate. Thus we consider the consistency in terms of a ratio
here as well as in Theorem A.1. Actually, this consistency statement is
very precise; it states that the ratio of two quantities, which are of the
order Op(1/n) and O(1/n), tends to 1 in probability.

Remark A.4. One important novelty of our approach is that k, k1,
and k2 can be chosen “independently.” Thus is desirable because their
optimal values can be very different, as they depend on C, F1, and F2,
respectively. The aforementioned work of de Haan and Huang (1995)
and almost all developments in multivariate EVT to date require that
k = k1 = k2.

A.2 In the Setting of Rd

The results of Theorem A.2 can be easily generalized to random vec-
tors in higher dimension. Here we highlight the changes needed for
such a generalization. Assume that the sample consists of n indepen-
dent copies of V = (V1, . . . ,Vd), a random vector in Rd with distrib-
ution function F. Denote the sample by V1, . . . ,Vn and the jth order
statistic of the mth component variable of the sample points by Vj:n,m.
Assume also that F satisfies the generalization to dimension d of the
domain of attraction condition (3.1) with the corresponding d extreme
value indexes γ1, . . . , γd . We then have

l(x1, . . . , xd) = − log G
(

x−γ1
1 − 1

γ1
, . . . ,

x−γd
d − 1

γd

)
,

where l again is homogeneous. Similar to the case of R2 in (3.7), l can
be estimated with

l̂n,k(x1, . . . , xd)

= k−1
n∑

j=1

I[Vj,1≥Vn−[kx1]+1:n,1 or ··· or Vj,d≥Vn−[kxd ]+1:n,d],

and with the corresponding l̃n,k; compare (3.8). It is easy to show that
both estimators are consistent (see, e.g., exercise 7.1 in de Haan and
Ferreira 2006).

For thresholding purposes, we would need to search for the multi-
variate quantile (x1, . . . , xd) such that

P(V1 > x1 or · · · or Vd > xd) = p,

and also that for given positive constants c2, . . . , cd ,

cjP(V1 > x1) = P(Vj > xj), j = 2, . . . ,d.

Denote the resulting solution by (x1,p1 , . . . , xd,pd ). We then have, as
in (3.6),

p1 ≈ p
l(1, c2, . . . , cd)

, pj ≈ cjp

l(1, c2, . . . , cd)
, j = 2, . . . ,d.

Proceeding similarly as for the bivariate case, we can now define the
subspace determined by the threshold point (x1,p1 , . . . , xd,pd ) as

Qp(d) =
(
−∞, x1,p1

]
× · · · ×

(
−∞, xd,pd

]
,

and define its corresponding estimate as

Q̂p(d) =
(
−∞, x̂1,p̂1

]
× · · · ×

(
−∞, x̂d,p̂d

]
.

Finally, arguments similar to those in the proof of Theorem A.2 allow
us to conclude that, under the d-variate version of the conditions of
Theorem A.2,

P(Q̂p(d).Qp(d))

p
p−→ 0.

SUPPLEMENTAL MATERIALS

The proofs of Theorems A.1 and A.2 are available online at
http://center.uvt.nl/ staff/einmahl/AppELL.pdf .

[Received June 2008. Revised January 2009.]
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